DBUS: Human Driving Behavior Understanding System

Guangyu Li*, Bo Jiang*, Zhengping Che, Xuefeng Shi, Mengyao Liu, Yiping Meng, Jieping Ye, and Yan Liu

Outline

- Introduction
- Motivation
- Overview
- System Architecture
- Driving Behavior Analysis
- Experiment & Case Study
- Summary

Introduction

- What is human driving behavior understanding?
 - Understand how humans drive and interact with environments.

- Driving behavior understanding in intelligent transportation systems
 - Autonomous driving (AD)
 - Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I)
 - Driving safety monitoring systems
 - Top priority for ride-sharing platform & fleet management

Introduction

- Why is human driving behavior understanding essential?
 - AD:
 - Proposing human-like P&C strategies, building the realistic simulator, etc.
 - V2V/V2I:
 - Providing insight for an efficient and convenient design of systems, etc.
 - Driving safety monitoring system:
 - Real-time driving safety monitoring and comprehensive driving safety profiling, etc.
- Key challenges come from
 - Sophisticated real-world traffic scenarios -- *Environment*
 - Huge diversities of different driving styles -- Drivers

Motivation

- Collection of human driving data on ride-sharing platform
 - Heterogeneous -- including videos, GPS/IMU signals, etc.
 - Large-scale -- offering potential for in-depth analysis

- Major challenges of human driving understanding
 - Handling different complex tasks
 - Perception, reasoning, attention, planning, etc.
 - Multiple-level analyzation
 - Low-level driving action recognition -> high-level driver's attention & cause inference
 - Heterogeneous data source
 - Each type of data has its own properties and works with different methodologies
 - System efficiency
 - Which plays a crucial role for practical deployment

Motivation

- Existing works for human driving behavior understanding
 - Only on relatively small dataset
 - Only analysis it at single level or on subset of tasks
 - Only leverage single type of data

- Our proposed solution
 - DBUS: Driving Behavior Understanding System

Problem formulation

- Input Human driving scenario $\mathcal{D} = (\mathbf{V}, \mathbf{S})$ with time horizon T
 - $\mathbf{V} = \{\mathbf{v}_t\}_{t=1}^T$ refers frames from front-view camera
 - $\mathbf{S} = \{\mathbf{s}_t\}_{t=1}^T$ denotes GPS/IMU signals
- Output Three-level structured representation of driving behavior $\mathcal{B} = (\mathbf{M}, \mathbf{W}, \mathbf{A})$
 - $\mathbf{M} = \{\mathbf{m}_t\}_{t=1}^T$ refers pre-defined basic driving actions
 - $\mathbf{W} = \{\mathbf{w}_t\}_{t=1}^T$ refers pre-defined driver's intentions
 - $\mathbf{A} = \{\mathbf{a}_{mask}^t, \mathbf{a}_{obj}^t\}_{t=1}^T$ refers driver's attention object categories

- We consider
 - 9 basic driving actions
 - 8 driver's intentions
 - 8 driver's attention object categories

Behavior	# of Categories	Categories
Driving Action (m)	9	{ left_accelerate, left_cruise, left_brake, straight_accelerate, straight_cruise, straight_brake, right_accelerate, right_cruise, right_brake }
Driving Intention (w)	8	{ following, left_turn, right_turn, left_lane_change, right_lane_change, left_merge, right_merge, U_turn }
Driving Attention (\mathbf{a}_{obj})	8	{ car, bus, truck, person, bicycle, motorcycle, tricycle, traffic light }

Real-World Human Driving Scenarios

Structured Driving Behavior Representation

Behavior-Based Driving Scenarios Retrieval

- Major tasks and applications
 - Driving behavior analysis
 - Joint inference of intention W and attention A
 - Driving scenario search & retrieval
 - Given $\mathcal{B} = (\mathbf{M}, \mathbf{W}, \mathbf{A})$, retrieve top-K relevant $\{\mathcal{D}_k = (\mathbf{V}_k, \mathbf{S}_k)\}_{k=1}^K$ from a massive database

System Architecture

- Major modules of DBUS
 - Perception
 - Vision perception and 3D reconstruction of driving scenarios, etc.
 - Driving Behavior Analysis core module
 - Generates 3-level structured representation with perception & GPS/IMU signals
 - Driving Scenario Retrieval
 - Efficient behavior-based retrieval of relevant driving scenarios

System Architecture

- Workflow of DBUS
 - 1. Feed $\mathcal{D} = (\mathbf{V}, \mathbf{S}) \rightarrow \mathbf{Perception}$ module $\rightarrow \mathcal{P} = (\mathbf{0}, \mathbf{D}, \mathbf{L})$
 - O: Semantic mask of detections; D: Following distance; L: Relative location
 - 2. Feed $\mathcal{P} = (\mathbf{0}, \mathbf{D}, \mathbf{L}) + \text{GPS/IMU} \rightarrow \text{Driving Behavior Analysis} \rightarrow \mathcal{B} = (\mathbf{M}, \mathbf{W}, \mathbf{A})$
 - 3. The Driving Scenario Retrieval takes $\mathcal B$ and returns top-K relevant $\mathcal D$

Notati	on		Туре	Definition	
Raw Data (\mathcal{D})	Video (V)	v	image	front-view video frames	
	GPS/IMU (S)	vs. _{speed}	\mathbb{R}	vehicle speed in GPS signals	
		vs. _{acc}	\mathbb{R}	forward accelerate in IMU signals	
		vs. _{yaw}	\mathbb{R}	yaw angular velocity in IMU signals	
Perception Result (\mathcal{P})	Objects (O)	О	mask	semantic mask of detected traffic participants and traffic lights	
	Distance (D)	d	\mathbb{R}	distance between ego-vehicle and nearest front traffic participants	
	Locations (L)	1	category	vehicle's location on the road based on the lane perception results	
Behavior Representation (\mathcal{B})	Action (M)	m	category	basic driving actions	
	Intention (W)	w	category	driving intention	
	Attention (A)	\mathbf{a}_{mask}	mask	driving attention mask	
		\mathbf{a}_{obj}	category	object category of driving attention	

Driving Behavior Analysis

- Basic driving action inference
 - Based on GPS/IMU signals S with a rule-based manner

- Intention and attention inference
 - Introduced a deep model INFER
 - Attention proposal network (APN)
 - Intention inference network
 - Input Set of features $\{o_t, d_t, l_t, vs._{yaw}^t, vs._{acc}^t, vs._{speed}^t\}_{t=1}^T$
 - Output Driving intention $\{\mathbf{w}_t\}_{t=1}^T$ & attention mask $\{\mathbf{a}_{mask}^t\}_{t=1}^T$
 - Note: we use $\{a_{mask}^t\}_{t=1}^T + \{o_t\}_{t=1}^T$ to find $\{a_{obj}^t\}_{t=1}^T$

Experimental Settings

Dataset

# of Samples	Time Horizon <i>T</i>	Sampling Rate	Video Resolution
2759	25	5Hz	1920 × 1080

Baselines

Li (USC) & Jiang (DiDi), et al.

- SVM predicts driving intentions $\{\mathbf w_t\}_{t=1}^T$ only
- XGBoost predicts $\{\mathbf w_t\}_{t=1}^T$ only
- INFER-NO-SM without using $\{\mathbf{o}_t\}_{t=1}^T$, predicts $\{\mathbf{w}_t\}_{t=1}^T$ only
- INFER-ONLY-SM only using $\{\mathbf{o}_t\}_{t=1}^T$, predicts both $\{\mathbf{w}_t\}_{t=1}^T$ & $\{\mathbf{a}_{mask}^t\}_{t=1}^T$
- INFER-NO-ATTN without inferring $\{\mathbf{a}_{mask}^t\}_{t=1}^T$, outputs $\{\mathbf{w}_t\}_{t=1}^T$ only

Quantitative Results

Results of attention & intention prediction

Confusion matrix

	* -	<u> </u>
	MSE (Attention masks)	ACC (Intentions)
SVM	-	0.193
XGBoost	-	0.258
INFER-NO-SM	-	0.276
INFER-ONLY-SM	0.032	0.693
INFER-NO-ATTN	-	0.628
INFER	0.025	0.772

Case Study

Attention inferred by DBUS

Case Study

• Retrieved driving scenario with query & its structured representation

Summary

- DBUS: Human Driving Behavior Understanding System
 - Integrated with Perception, Driving Behavior Analysis and Driving Scenario Retrieval
 - A structured representation of driving behavior is designed with multi-level understanding
 - Developed INFER, jointly infers driver's intention & attention
 - Provides a total solution for mining large-scale human driving behavior data

Future works

- Design semi-supervised learning method
 - To alleviate the demand for data annotation
- Optimize the system with pruning & compression of deep neural networks
 - To deploy DBUS into on-vehicle embedded platforms

Thank you!

Our Poster is @ Room 401 #155

DiDi Al Labs

USC Melady Lab

http://ai.didiglobal.com/

https://melady.usc.edu/