S92: Interpretable Deep Models for ICU Outcome Prediction

Zhengping Che¹, Sanjay Purushotham¹, Robinder Khemani², and Yan Liu¹

¹University of Southern California ²Children's Hospital Los Angeles

Nov 16, 2016

Che et al. (AMIA 2016)

Interpretable Deep Model

Nov 16, 2016

The speaker and authors have no relationships with financial or commercial interests related to this work.

Outline

- Background
 - Our footprint and other related work
 - New challenges we addressed
- Deep model for ICU prediction
 - Deep models for multi-modal ICU data
 - Quantitative evaluations
- Interpretable deep model
 - Interpretable mimic learning framework
 - Model evaluations and interpretations
- Conclusion

Time series data is ubiquitous in health care

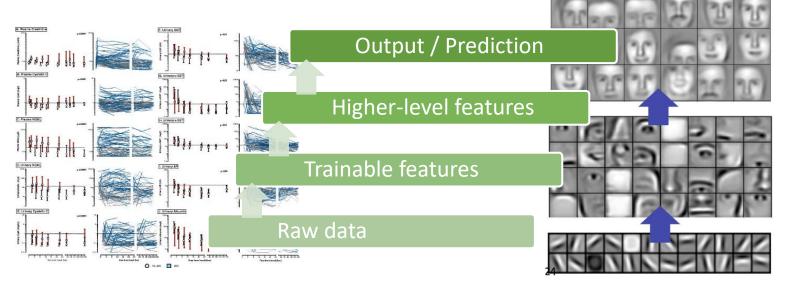
Electronic Medical Records (EMR) from hospital ICUs

Personalized health data from mobile devices

- Opportunities to improve health care quality
- Urgent needs of powerful and interpretable data-driven models

Why deep learning (deep models)?

- Health care: phenotypes, biomarkers
- **Deep learning:** *features, representations*



- Features from human knowledge...
- Measurable!
- Useful!
- Interpretable?!

Features automatically learnt from data!

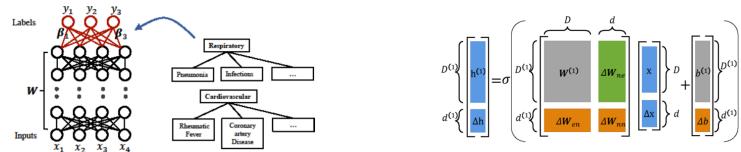
Che et al. (AMIA 2016)

Interpretable Deep Model

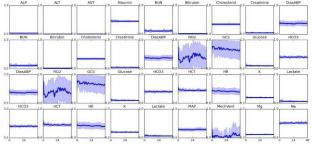
Nov 16, 2016 5 / 27

Our roadmap

 Deep Computational Phenotyping [SIGKDD 2015]



Causal Phenotype Discovery via Deep Networks
[AMIA 2015]



 Interpretable Deep Models for ICU Outcome Prediction [AMIA 2016] (this work)

Nov 16, 2016 6 / 27

Related deep models for health care

- Stacked Auto-encoder (SDA)
- **Computational phenotyping**

[Lasko et al., 2013, Miotto et al., 2016]

Deep neural networks (DNNs)

Restricted Boltzmann machine (RBM) Multi-layer perceptron (MLP)

Condition prediction

[Dabek, Caban, 2015; Hammerla et al., 2015]

Recurrent neural networks (RNNs)

Long short-term memory (LSTM) Gated recurrent unit (GRU)

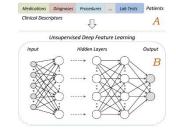
Diagnosis/event prediction

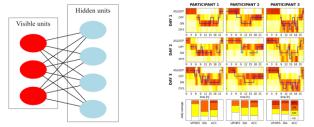
[Lipton et al., 2015; Choi et al., 2015]

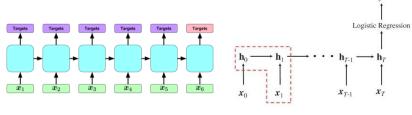
Che et al. (AMIA 2016)

Interpretable Deep Model

the low of the sure where

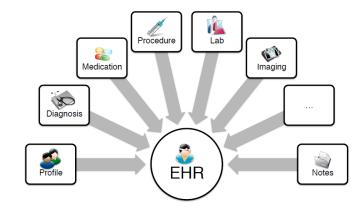




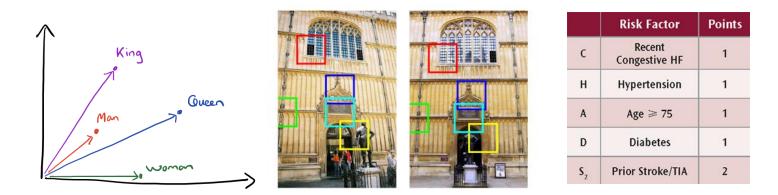


Challenges still remain

• Handle multi-modal data in healthcare

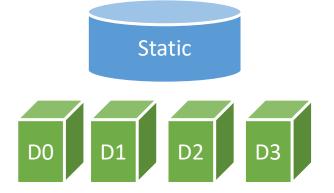


• Provide fundamental and essential interpretability



Case study on ICU outcome prediction

- Acute hypoxemic respiratory failure
 - 398 patients at Children's Hospital Los Angeles (CHLA)
 - All patients stay >3 days
- Data
 - Static variables
 - 27 variables
 - Age, weight, etc.
 - Temporal variables
 - 21 variables x 4 days
 - Blood gas, ventilator signals, injury markers, etc.
- Prediction tasks
 - Mortality
 - Ventilator free days



Outline

Background

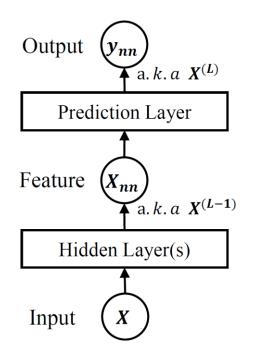
- Our footprint and other related work
- New challenges we addressed
- Deep model for ICU prediction
 - Deep models for multi-modal ICU data
 - Quantitative evaluations
- Interpretable deep model
 - Interpretable mimic learning framework
 - Model evaluations and interpretations
- Conclusion

Our deep learning models

• Handle both static and temporal variables?

Our deep learning model - DNN

- Static + *flattened* temporal features
 - **DNN** (deep feed-forward neural net)



Che et al. (AMIA 2016)

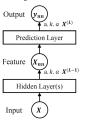
Interpretable Deep Model

Nov 16, 2016 12 / 27

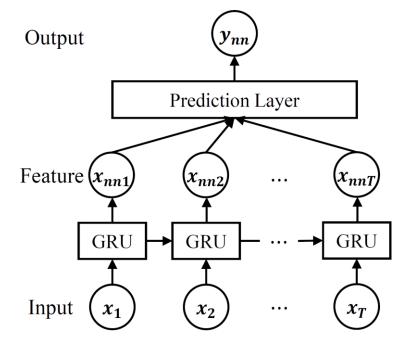
Our deep learning model - GRU

• Static + (flattened) temporal features

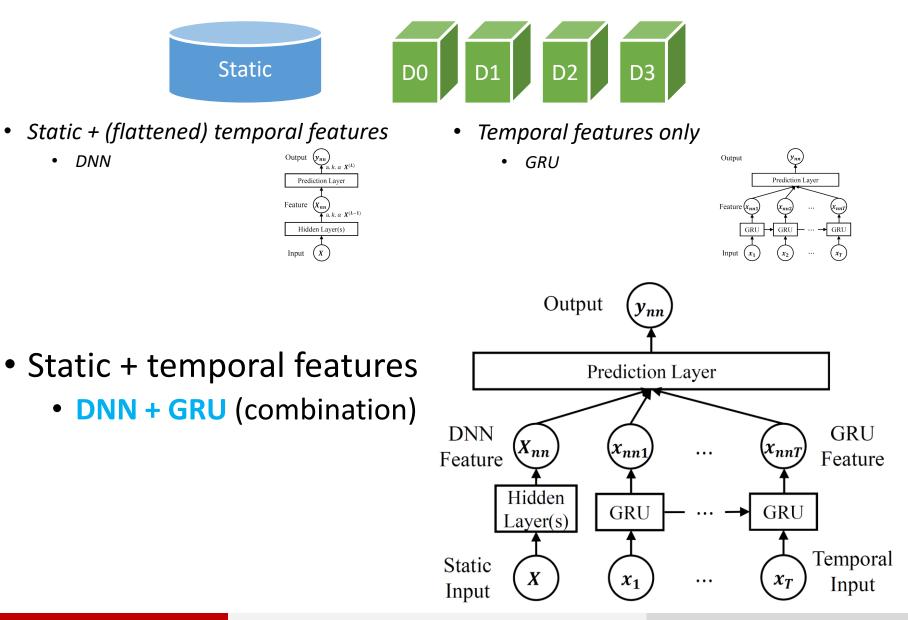
• DNN



- Temporal features only
 - **GRU** (Gated Recurrent Unit)



Our deep learning model - DNN + GRU



Che et al. (AMIA 2016)

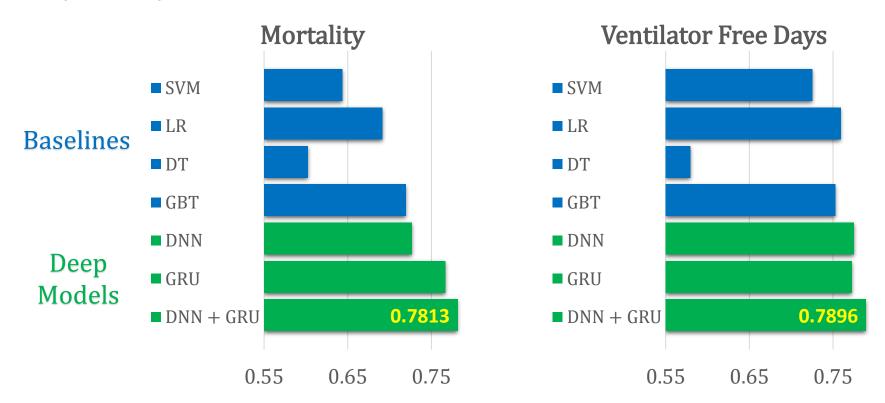
٠

Interpretable Deep Model

14 / 27 Nov 16, 2016

Quantitative results

Prediction on patients with acute hypoxemic respiratory failure (AUROC)



SVM: support vector machine;LR: logistic regression;DT: decision tree;GBT: gradient boosting tree.Results are based on 5-fold cross-validation.

Che et al. (AMIA 2016)

Interpretable Deep Model

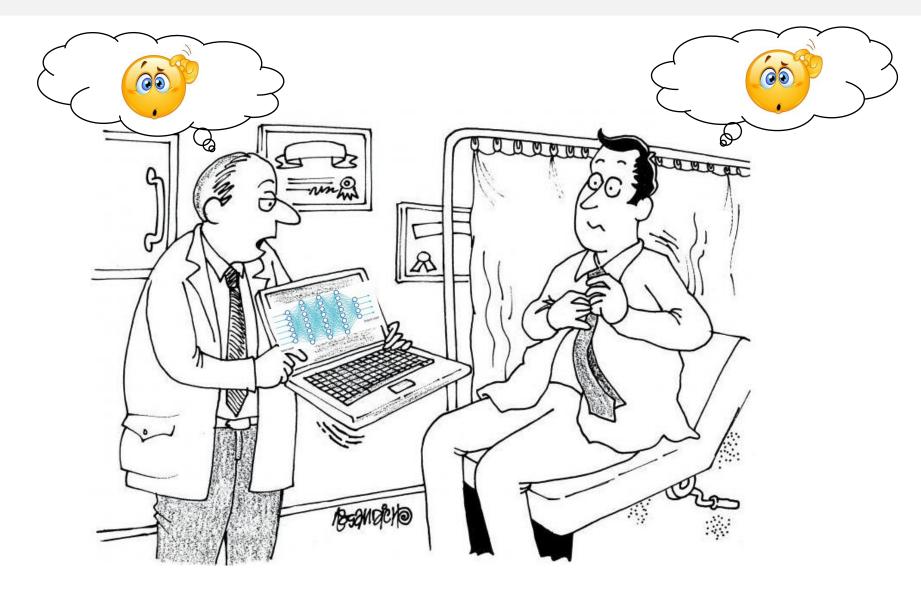
Nov 16, 2016 15 / 27

Outline

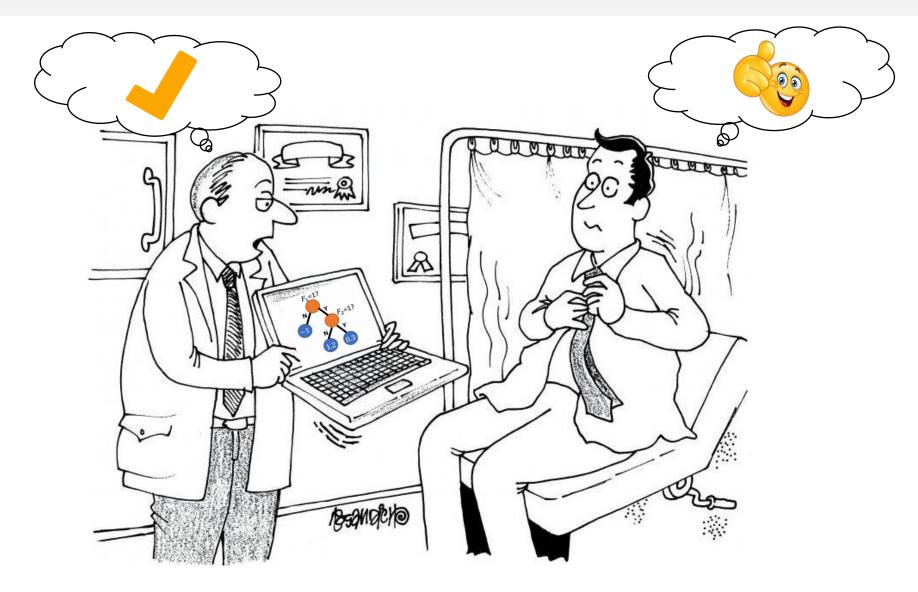
- Background
 - Our footprint and other related work
 - New challenges we addressed
- Deep model for ICU prediction
 - Deep models for multi-modal ICU data
 - Quantitative evaluations
- Interpretable deep model
 - Interpretable mimic learning framework
 - Model evaluations and interpretations

Conclusion

Interpretability is necessary

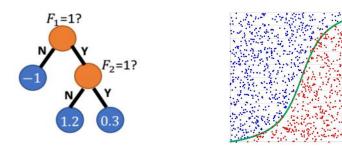


Interpretability is necessary

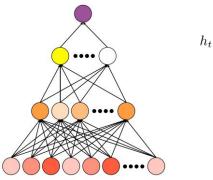


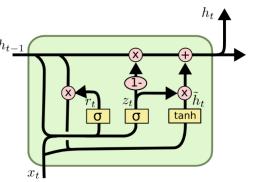
Performance vs. Interpretability

- Simple and commonly used models
 - Easy to interpret, mediocre performance



- Deep learning solutions
 - Superior performance, hard to explain





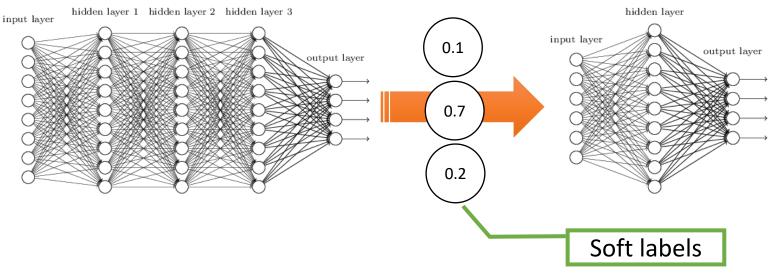
Activiteviolfg betroateren interpretation and performance

Mimic learning (knowledge distillation)

[Ba, Caruana, 2014]; [Hinton, et al., 2015]

Teacher (base) model

Student (mimic) model



Method

• $\sum_{i=1}^{N} \left| y_{soft,i} - F_{mimic}(X_i) \right|^2$

Explanation

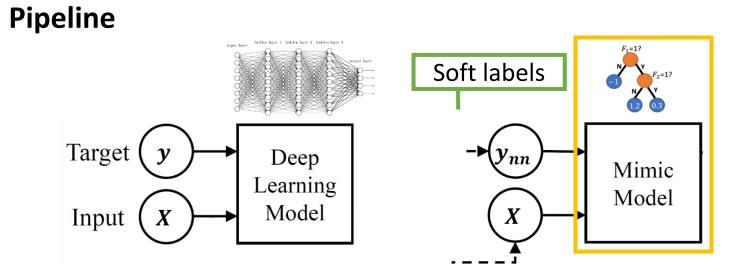
• More information from teacher models, reduced noises, implicit regularizations, etc.

Nov 16, 2016 20 / 27

Interpretable mimic learning framework

Main idea

Use Gradient Boosting Trees (GBT) to mimic deep learning models.



Benefits

- Good performance
- Less overfitting
- Interpretations

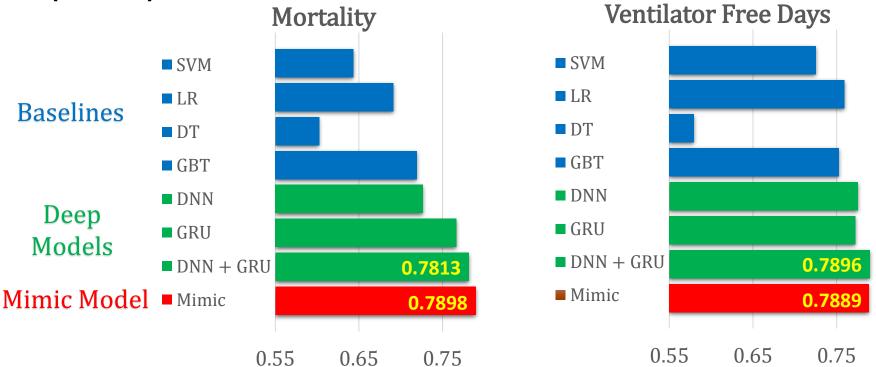
Che et al. (AMIA 2016)

Interpretable Deep Model

Nov 16, 2016 21 / 27

Quantitative results

Prediction on patients with acute hypoxemic respiratory failure (AUROC)



SVM: support vector machine;LR: logistic regression;DT: decision tree;GBT: gradient boosting tree.Results are based on 5-fold cross-validation.

Che et al. (AMIA 2016)

Interpretable Deep Model

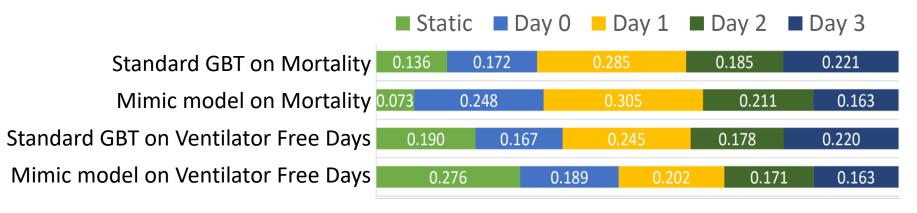
Nov 16, 2016 22 / 27

Interpretability: feature importance

Most important features (and importance scores)

Task	Mortality		Ventilator Free Days	
Model	Standard GBT	Mimic model	Standard GBT	Mimic model
Features	PaO2-Day2	BE-Day0	MAP-Day1	MAP-Day1
	(0.0539)	(0.0433)	(0.0423)	(0.0384)
	MAP-Day1	deltaPF-Day1	PH-Day3	PIM2S
	(0.0510)	(0.0431)	(0.0354)	(0.0322)
	BE-Day1	PH-Day1	MAP-Day2	VE-Day0
	FiO2-Day3	PF-Day0	MAP-Day3	VI-Day0
	PF-Day0	MAP-Day1	PRISM12	PaO2-Day0

Feature importance for variables on each day



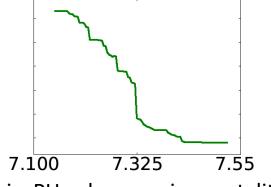
Che et al. (AMIA 2016)

Interpretable Deep Model

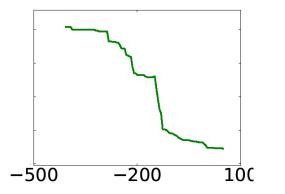
Nov 16, 2016 23 / 27

Interpretability: feature dependency

How features are evaluated for mortality prediction in our model



x-axis: PH value; y-axis: mortality risk



x-axis: delta-PF ratio; y-axis: mortality risk

PH value in blood

 A very narrow normal range around 7.35-7.45

Change of PaO2/FiO2 ratio

- Normal range: 400-500 mmHg
- < 200: necessary for the diagnosis of respiratory distress syndrome

Che et al. (AMIA 2016)

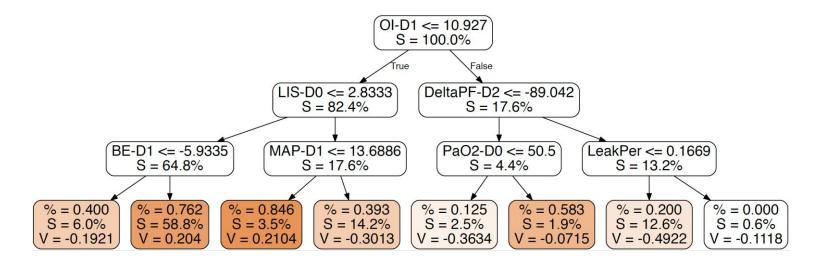
Nov 16, 2016 24 / 27

Interpretability: decision tree

Most important trees for ventilator free days prediction

Ventilator free days

- Lung injury score
- Oxygenation index
- Change of PaO2/FiO2 ratio



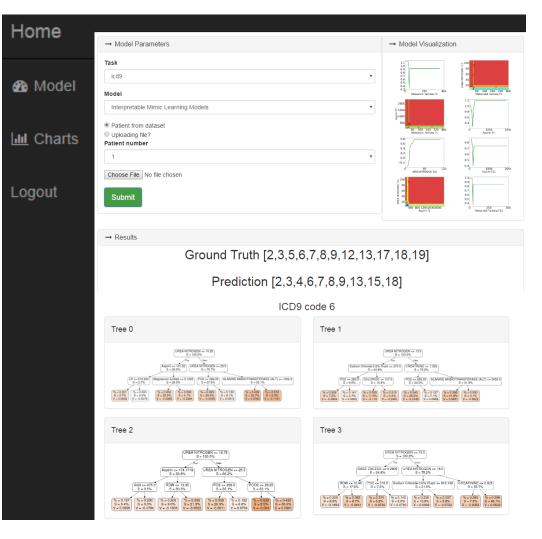
% and color: class distribution; S: # of samples; V: prediction value

```
Che et al. (AMIA 2016)
```

Nov 16, 2016 25 / 27

Our system under development

- A health care benchmark platform for deep models
- Interpretable deep models and other ML models trained on MIMIC-III dataset
- Apply on public and userprovided EHR datasets
- Provide model interpretation, visualization and results
- Welcome to try and collaborate!



Che et al. (AMIA 2016)

Interpretable Deep Model

Nov 16, 2016 26 / 27

Conclusion

- Summary
 - Good prediction performance from deep neural networks
 - Interpretability from simple and effective mimic methods
- Future work
 - Further clinical validation and investigation
 - Scalable system for more medical tasks and features
- Contact
 - Zhengping Che zche@usc.edu
 - USC Melady Lab <u>http://www-bcf.usc.edu/~liu32/melady.html</u>

Thank you!

References

[Lasko et al., 2013] Lasko, Thomas A., Joshua C. Denny, and Mia A. Levy. "Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data." PloS one 8.6. 2013.

[Miotto et al., 2016] Miotto, Riccardo, et al. "Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records." Scientific reports 6 (2016).

[Dabek, Caban, 2015] Dabek, Filip, and Jesus J. Caban. "A neural network based model for predicting psychological conditions." International Conference on Brain Informatics and Health. Springer International Publishing, 2015.

[Hammerla et al., 2015] Hammerla, Nils Yannick, et al. "PD Disease State Assessment in Naturalistic Environments Using Deep Learning." AAAI. 2015.

[Lipton et al., 2015] Lipton, Zachary C., et al. "Learning to Diagnose with LSTM Recurrent Neural Networks." arXiv preprint arXiv:1511.03677. 2015.

[Choi et al., 2015] Choi, Edward, Mohammad Taha Bahadori, and Jimeng Sun. "Doctor AI: Predicting Clinical Events via Recurrent Neural Networks." arXiv preprint arXiv:1511.0594. 2015.

[Ba, Caruana, 2014] Ba, Jimmy, and Rich Caruana. "Do deep nets really need to be deep?." Advances in Neural Information Processing Systems. 2014.

[Hinton et al., 2015] Hinton, Geoffrey, Oriol Vinyals, and Jeff Dean. "Distilling the knowledge in a neural network." arXiv preprint arXiv:1503.02531. 2015.

Che et al. (AMIA 2016)