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Outline

• Background
• Our footprint and other related work
• New challenges we addressed

• Deep model for ICU prediction
• Deep models for multi-modal ICU data
• Quantitative evaluations

• Interpretable deep model
• Interpretable mimic learning framework
• Model evaluations and interpretations

• Conclusion
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Time series data is ubiquitous in health care
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Electronic Medical 
Records (EMR) 

from hospital ICUs

Personalized 
health data from 
mobile devices

• Opportunities to improve health care quality
• Urgent needs of powerful and interpretable data-driven models
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Why deep learning (deep models)?

• Health care: phenotypes, biomarkers

• Deep learning: features, representations

• Features from human knowledge…

• Measurable!

• Useful!

• Interpretable?!
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Output / Prediction

Higher-level features

Trainable features

Raw data

Features automatically learnt from data!
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Our roadmap

• Deep Computational Phenotyping
[SIGKDD 2015]

• Causal Phenotype Discovery via Deep Networks
[AMIA 2015]

• Interpretable Deep Models for ICU Outcome Prediction
[AMIA 2016] (this work)
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Related deep models for health care

Nov 16, 2016

• Stacked Auto-encoder (SDA)

• Computational phenotyping

[Lasko et al., 2013, Miotto et al., 2016]

• Deep neural networks (DNNs)
Restricted Boltzmann machine (RBM)
Multi-layer perceptron (MLP)

• Condition prediction

[Dabek, Caban, 2015; Hammerla et al., 2015]

• Recurrent neural networks (RNNs)
Long short-term memory (LSTM)
Gated recurrent unit (GRU)

• Diagnosis/event prediction

[Lipton et al., 2015; Choi et al., 2015]
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Challenges still remain

• Handle multi-modal data in healthcare

• Provide fundamental and essential interpretability
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Case study on ICU outcome prediction

• Acute hypoxemic respiratory failure
• 398 patients at Children's Hospital 

Los Angeles (CHLA) 

• All patients stay >3 days

• Data
• Static variables

• 27 variables
• Age, weight, etc.

• Temporal variables
• 21 variables x 4 days
• Blood gas, ventilator signals, 

injury markers, etc.

• Prediction tasks
• Mortality

• Ventilator free days
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Our deep learning models
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D1 D2 D3D0Static

• Handle both static and temporal variables?
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Our deep learning model - DNN

• Static + flattened temporal features
• DNN (deep feed-forward neural net)
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Our deep learning model - GRU

• Static + (flattened) temporal features
• DNN

• Temporal features only
• GRU (Gated Recurrent Unit)
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• Temporal features only
• GRU

Our deep learning model - DNN + GRU

• Static + (flattened) temporal features 
• DNN

• Static + temporal features
• DNN + GRU (combination)
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Quantitative results
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Prediction on patients with acute hypoxemic respiratory failure 
(AUROC)

0.7813

0.55 0.65 0.75

Mortality

SVM

LR

DT

GBT

DNN

GRU

DNN + GRU 0.7896

0.55 0.65 0.75

Ventilator Free Days

SVM

LR

DT

GBT

DNN

GRU

DNN + GRU

Baselines

Deep
Models

SVM: support vector machine; LR: logistic regression; 
DT: decision tree;   GBT: gradient boosting tree.
Results are based on 5-fold cross-validation.
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Interpretability is necessary
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Interpretability is necessary
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Performance vs. Interpretability

• Simple and commonly used models
• Easy to interpret, mediocre performance

• Deep learning solutions
• Superior performance, hard to explain
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Trade-off 
between 

interpretation 
and 

performance 

Achieving
both 

interpretation 
and 

performance 
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Mimic learning (knowledge distillation)

Method

• σ𝑖=1
𝑁 𝑦𝑠𝑜𝑓𝑡,𝑖 − 𝐹𝑚𝑖𝑚𝑖𝑐 𝑋𝑖

2

Explanation
• More information from teacher models, reduced noises, implicit 

regularizations, etc.
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Teacher (base) model Student (mimic) model

0.1

0.7

0.2

Soft labels

[Ba, Caruana, 2014]; [Hinton, et al., 2015]
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Main idea
Use Gradient Boosting Trees (GBT) to mimic deep learning models.

Pipeline

Benefits
• Good performance

• Less overfitting

• Interpretations

Interpretable mimic learning framework
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Quantitative results
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Prediction on patients with acute hypoxemic respiratory failure
(AUROC)

SVM: support vector machine; LR: logistic regression; 
DT: decision tree;   GBT: gradient boosting tree.
Results are based on 5-fold cross-validation.

0.7813

0.7898

0.55 0.65 0.75

Mortality

SVM

LR

DT

GBT

DNN

GRU

DNN + GRU

Mimic

0.7896

0.7889

0.55 0.65 0.75

Ventilator Free Days

SVM

LR

DT

GBT

DNN

GRU

DNN + GRU

Mimic

Baselines

Deep
Models

Mimic Model
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Interpretability: feature importance
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Task Mortality Ventilator Free Days
Model Standard GBT Mimic model Standard GBT Mimic model

Features

PaO2-Day2 
(0.0539)

BE-Day0 
(0.0433)

MAP-Day1 
(0.0423)

MAP-Day1 
(0.0384)

MAP-Day1 
(0.0510)

deltaPF-Day1 
(0.0431)

PH-Day3 
(0.0354)

PIM2S 
(0.0322)

BE-Day1 PH-Day1 MAP-Day2 VE-Day0
FiO2-Day3 PF-Day0 MAP-Day3 VI-Day0 

PF-Day0 MAP-Day1 PRISM12 PaO2-Day0

Standard GBT on Mortality

Mimic model on Mortality

Standard GBT on Ventilator Free Days

Mimic model on Ventilator Free Days

Most important features (and importance scores)

Feature importance for variables on each day
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Interpretability: feature dependency
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How features are evaluated for mortality prediction in our model

PH value in blood
• A very narrow normal range around 

7.35-7.45

Change of PaO2/FiO2 ratio
• Normal range: 400-500 mmHg
• < 200: necessary for the diagnosis of 

respiratory distress syndrome

x-axis: PH value; y-axis: mortality risk

x-axis: delta-PF ratio; y-axis: mortality risk
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Interpretability: decision tree

Nov 16, 2016Che et al. (AMIA 2016) 25 / 27

Ventilator free days
• Lung injury score
• Oxygenation index
• Change of PaO2/FiO2 ratio

% and color: class distribution; S: # of samples; V: prediction value

Most important trees for ventilator free days prediction
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Our system under development
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• A health care benchmark platform for deep models

• Interpretable deep models 
and other ML models trained 
on MIMIC-III dataset

• Apply on public and user-
provided EHR datasets

• Provide model interpretation, 
visualization and results

• Welcome to try and  
collaborate!
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Conclusion

• Summary
• Good prediction performance from deep neural networks

• Interpretability from simple and effective mimic methods

• Future work
• Further clinical validation and investigation

• Scalable system for more medical tasks and features

• Contact
• Zhengping Che zche@usc.edu

• USC Melady Lab http://www-bcf.usc.edu/~liu32/melady.html
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Thank you!

mailto:zche@usc.edu
http://www-bcf.usc.edu/~liu32/melady.html
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