Deep ExpeCted Alignment DistancE (DECADE): A Deep Metric Learning Model for Multivariate Time Series

Zhengping Che, Xinran He, Ke Xu, Yan Liu University of Southern California {zche, xinranhe, xuk, yanliu.cs}@usc.edu

UNIVERSITY OF SOUTHERN CALIFORNIA

BACKGROUND

• **Determining similarity (or distance)** between multivariate time series is useful and fundamental

- Find similar patients for better diagnosis and decision making
- Verify whether two voice clips are from the same speaker
- Finding a good multivariate time series similarity is extremely challenging
- Complex *temporal* dependencies
- *Variable* lengths of time series
- *No universal* similarity measure works best across all time series applications
- Learning a *data-dependent* distance metric is vital

MOTIVATION AND COMPARISONS

- Three desired properties of good time series similarity measures
 - What kind of **local** distance to use
 - \times Predefined local distance
 - ✓ Flexible data-dependent local distance for multivariate data

LEARNING DECADE VIA LARGE MARGIN METHOD

- Input: a set of time series $\{X_i\}_{i=1}^N$ and their labels $\{Y_i\}_{i=1}^N$
- Overall objective function to minimize:

$$\mathcal{L}(D) = \sum_{i=1}^{N} \sum_{j \in \mathcal{S}_{i}^{+}} D^{(i,j)} + \lambda \sum_{i=1}^{N} \sum_{j \in \mathcal{S}_{i}^{+}} \sum_{k \in \mathcal{S}_{i}^{-}} \left[\delta + D^{(i,j)} - D^{(i,k)} \right]_{+} + \mathcal{R}(D)$$

- $\mathcal{L}^+(D)$: Reduce the distance of two time series with the same label
- $\mathcal{L}^{-}(D)$: Increase the distance of two time series with different labels
- $\mathcal{R}(D)$: Regularizations on our model. E.g., L2 loss on network weights, etc.

THEORETICAL RESULTS ON DECADE

- Theorem 1. (*Guarantees on the validity of DECADE*) When the local similarity measure $d(\mathbf{X}_t, \mathbf{Y}_{t'})$ is a valid distance metric, the expected alignment produces a valid pseudo-metric $D_{\text{EA}}(\mathbf{X}, \mathbf{Y})$. Namely, it satisfies all the three following properties:
 - (a) $D_{\text{EA}}(\boldsymbol{X}, \boldsymbol{Y}) \geq 0$ (non-negativity)
 - (b) $D_{\text{EA}}(\boldsymbol{X}, \boldsymbol{Y}) = D_{\text{EA}}(\boldsymbol{Y}, \boldsymbol{X})$ (symmetry)
 - (c) $D_{\text{EA}}(\boldsymbol{X}, \boldsymbol{Y}) + D_{\text{EA}}(\boldsymbol{Y}, \boldsymbol{Z}) \ge D_{\text{EA}}(\boldsymbol{X}, \boldsymbol{Z})$ (triangle inequality)
- Theorem 2. (*Efficiency of the sampling method*) Given any two time series X and Y and the local distance is bounded by 1, if we approximate expected alignments with $O\left(\frac{U_h^2}{\varepsilon^3}\right)$ alignment samples, with high probability we have

- Whether to **align** the time series
- \times Do not take the (pairwise temporal) alignment
- $\checkmark~$ Use alignment to capture temporal dependencies
- Whether to have a valid distance metric which satisfies triangle inequality
 × Not a valid metric/pseudo-metric
- \checkmark A valid metric which can be used for e.g., kernel methods, and fast nearest neighbor search
- Comparison of some common time series similarities and our proposed model

		Data-dependent local metric	Considering alignment	Valid metric
MDTW	[Berndt, James, 1994]	No	Single	No
GAK	[Cuturi et al., 2007]	No	Multiple	Yes^1
MSA	[Hogeweg, Ben, 1984]	No	Single	Yes
ML-TSA	[Garreau et al., 2014]	Yes (Linear)	Single ²	No
LDMLT-TS	[Mei et al., 2016]	Yes (Linear)	Single	No
MaLSTM	[Mueller, Aditya, 2016]	Yes (Deep)	No	Yes
DECADE	Proposed in this work	Yes (Deep)	Multiple	Yes

¹ Constraints on local kernel selection; ² Ground-truth alignment is required for training.

ALIGNMENT AND DISTANCE ON AN ALIGNMENT

- $X \in \mathbb{R}^{p \times T_X}$: a time series with p features and T_X time steps
- An *alignment A* of two time series *X* and *Y* can be defined as a pair of non-decreasing sequences (*α*, *β*)
 - *U*: the length of the alignment
 - $\alpha_t \in \{1, \cdots, T_X\}$ and $\beta_t \in \{1, \cdots, T_Y\}$ for all $t \in \{1, \cdots, U\}$
- Given any local distance d(x, y), the distance between X and Y is defined as $D_A^{(X,Y)} = \sum^U d(X_{\alpha_t}, Y_{\beta_t})$

$\left| D_{\mathrm{EA}}(\boldsymbol{X}, \boldsymbol{Y}) - \hat{D}_{\mathrm{EA}}(\boldsymbol{X}, \boldsymbol{Y}) \right| \leq \varepsilon$

QUANTITATIVE RESULTS

• Summary of 3 real-world datasets

Dataset	# of time series	# of time steps	# of features	# of classes	Prediction task
EEG	436	16	64	6	Alcoholic and # of stimuli
PhysioNet	918	48	17	2	In-hospital mortality
ICU	1734	24 - 36	13	2	In-hospital mortality

• DECADE achieves the best 1-nn classification accuracy on 2 of the 3 datasets

Method \setminus Dataset	EEG	PhysioNet	ICU
MDTW	0.3026 ± 0.06	0.6509 ± 0.05	0.7180 ± 0.02
GAK	0.3114 ± 0.05	0.6479 ± 0.05	0.6910 ± 0.03
MSA	0.2700 ± 0.03	0.6553 ± 0.05	0.6996 ± 0.02
ML-TSA	0.3375 ± 0.06	0.6406 ± 0.04	0.7123 ± 0.02
LDMLT-TS	0.3475 ± 0.03	0.6499 ± 0.04	$\boldsymbol{0.7278 \pm 0.03}$
MaLSTM	0.2963 ± 0.02	0.6886 ± 0.03	0.6926 ± 0.02
MSA-NN	0.3271 ± 0.05	0.6557 ± 0.02	0.7123 ± 0.02
MDTW-NN	0.3067 ± 0.05	0.6981 ± 0.02	0.7220 ± 0.02
DECADE	0.3652 ± 0.01	0.7060 ± 0.02	0.7232 ± 0.02

• Learning local distance and using expected alignment are two dispensable components for better performance

EEG		PhysioNet		ICU	
$\begin{array}{c} MDTW \\ 0.3026 \pm 0.06 \end{array}$	EA^{3} 0.2845 ± 0.03	$\begin{array}{c} MDTW \\ 0.6509 \pm 0.05 \end{array}$	$\begin{array}{c} EA \\ 0.5326 \pm 0.05 \end{array}$	$\begin{vmatrix} MDTW \\ 0.7180 \pm 0.02 \end{vmatrix}$	$\begin{array}{c} EA\\ 0.6811\pm0.01\end{array}$
MDTW-NN ⁴	DECADE	MDTW-NN	DECADE	MDTW-NN	DECADE

EXPECTED ALIGNMENT

• Dynamic time warping (MDTW) takes one single best alignment from all possible alignments $D_{DTW}(\mathbf{X}, \mathbf{Y}) = \min D^{(\mathbf{X}, \mathbf{Y})}$

$$D_{DTW}(\boldsymbol{X}, \boldsymbol{Y}) = \min_{\boldsymbol{A} \in \mathcal{A}} D_{\boldsymbol{A}}^{(\boldsymbol{X}, \boldsymbol{Y})}$$

- \times Not satisfy triangle inequality
- \times Training with local distance is non-differentiable
- The proposed distance on **expected alignment** takes the average distance over all possible alignment paths with a proper length $U \in [U_l, U_h]$

 $D_{EA}(\boldsymbol{X}, \boldsymbol{Y}) = \mathbb{E}_{\boldsymbol{U} \in [\boldsymbol{U}_l, \boldsymbol{U}_h]} \left[\mathbb{E}_{\boldsymbol{A} \in \mathcal{A}_{\boldsymbol{U}}} D_{\boldsymbol{A}}^{(\boldsymbol{X}, \boldsymbol{Y})} \right]$

- \checkmark Theoretical guarantees exist on metric validity
- \checkmark Training and calculating can be simple and efficient
- A simple *sampling-based* method is designed to efficiently calculate the distance
 (a) Uniformly sample U ∈ [U_l, U_h] as the alignment length
 - (b) Uniformly sample an alignment of length U from all possible alignments

LEARNING LOCAL DISTANCE VIA DEEP NETWORKS

- We use multi-layer feed-forward network as the transformation function at each frame
- Network weights are shared across different time steps
- Local distance is defined as the squared Euclidean distance of the transformed vectors
- In practice, 2-hidden-layer network with ReLU sigmoid activations works fine enough on our datasets

- $0.3067 \pm 0.05 \quad 0.3652 \pm 0.01 \quad 0.6981 \pm 0.02 \quad 0.7060 \pm 0.02 \quad 0.7220 \pm 0.02 \quad 0.7232 \pm 0.02$
- ³ EA: expected alignment + fixed L_2 local distance; ⁴ MDTW-NN: MDTW + learnable local distance.
- Learning data-dependent local distance always helps
- MDTW performs better than EA without metric learning
- DECADE achieves larger improvement than MDTW-NN by learning the data-dependent local distance

VISUALIZATION

• Embedding of PhysioNet dataset in 2 dimensions by multi-dimensional scaling (MDS) with learned pairwise distance (*Red: Patients with in-hospital mortality; Green: Live patients*)

DECADE

LDMLT-TS

MaLSTM

- DECADE provided more coherent clusters of patients
- Patients with in-hospital mortality (usually with extreme/abnormal values) spread out while live patients centered in the middle

REFERENCES

[Berndt, James, 1994] Berndt, Donald J., and James Clifford. "Using dynamic time warping to find patterns in time series." KDD workshop 1994.

- [Cuturi et al., 2007] Cuturi, Marco, et al. "A kernel for time series based on global alignments." ICASSP 2007.
- [Hogeweg, Ben, 1984] Hogeweg, Paulien, and Ben Hesper. "The alignment of sets of sequences and the construction of phyletic trees: an integrated method." JME 1984.
- [Garreau et al., 2014] Garreau, Damien, et al. "Metric learning for temporal sequence alignment." NIPS 2014.
- [Mei et al., 2016] Mei, Jiangyuan, et al. "Learning a mahalanobis distance-based dynamic time warping measure for multivariate time series classification." CYB 2016.
- [Mueller, Aditya, 2016] Mueller, Jonas, and Aditya Thyagarajan. "Siamese Recurrent Architectures for Learning Sentence Similarity." AAAI 2016.
- [Hoeffding, 1963] Hoeffding, Wassily. "Probability inequalities for sums of bounded random variables." JASA 1963.