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MODEL PAR

e A generation model () with transition and emission framework

BACKGROU QUANTITA

e Two real-world datasets from healthcare and climate domains

MR-MTS from Intensive Care Units

e MR-MTS (multi-rate multivariate time series)

*—-Ik MeanArtelrial Blood Pr&lss.Jre
— Time series Wlth different sampling rates . _\'—'Mi”’*"way Pressure Dataset # of Sampling Rates  # of Variables Time Series
— May from multiple data sources/sensors - ] Name Samples (HSR/MSR/LSR) of Each Rate Length
— Many real-world applications >
. . . MIMIC-III 10709 1/4/12 Hours 7/11/44 72 Hours
* Healthcare: vital signs in ICU /lab tests USHCN? 100 1/5/10 Days 70/69 /69 365 Days
+ Climate: daily/seasonal observations
* Financial for.ecastmg, mgchamcal maitn- | | | | e Forecasting performance on USHCN (Mean Squared Error(MSE))
tenance, business analysis... T Pmedte Admisson (Houg &
O Latent variable = Method \ Rate Al HSR MSR LSR
i .
Observation x Kalman Filter (KF) 1.236 1.254 1.190 1.148
i . Unobserved data Vector Autoregression (VAR) 2.415 2579 1.921 1.748
b | " ) Switches s Single-Rate Deep Markov Model (DMM)* | 0.795 0.608 0.903 0.877
= HHEW 'ses B | Baselines ~ HM-RNN?® 0.692 0.594 1.151 0.775
o e e ~ > Auxiliary connections LSTM 0.849  0.688 0.934  0.928
N e sl B oun =L PLSTM® 0.813 0.710 0.870  0.915
e Modeling MR-MTS is challenging e Transition - using states z to capture the latent temporal dependencies Multiple KF 1212 1082 1727 1518
— Data of different sampling rates — Transition distribution of z: multivariate Gaussian Multi-Rate ~ Multi-Rate KF 0.628 0.542 0.986  0.799
— Multi-scale temporal dependencies e Emission - generating observations x from states z Baselines =~ Multi-Rate DMM (MR-DMM) | 0.667 0.611  0.847 0.875
- Complex underlying generation mechanism — Emission distribution of x: multinomial /Gaussian for discrete/continuous data Hierarchical DMM (HDMM) | 0.626 0568 0815 0.836
e How Can we etfectively forecast/interpolate unobserved values in MR-MTS? e Joint probability of MR-MTS observations and latent states/switches MR-HDMM 0.591 0.541 0.742 0.795
(E.g., :B MR—MTS observations of L sampling rates and 7' time steps) ik ) < T T . . o . L .
- Smgle mte models? (Kalman Filter, VAR, DMM, etc.) po (wiz: 2uir #1ig10™) = e i (@il - T o (zil2e0) Mo Iisa o (silzeso 27 o, (=1l 201 e Interpolation performance (Mean Squared Error(MSE))
+ Ignoring dependencies across different rates — Solving marginal MLE? = Stochastic variational inference! MIMIC-TII USHCN
— Simple imputations? (MICE, MissForest, etc.) Method \ Dataset In-Sample Out-Sample | In-Sample
+ May introduce unrelated or hide natural dependencies Simple-Mean 2 819 3193 0.9]7
— Multi-rate discriminative models? (PLSTM, HM-RNN, etc.) MODEL PAR N CubicSpline 3.713 3.212x 104 0.947
. mputation
* Not able to learn how the data is generated e An inference network (¢) to mimic the structure of the generation model stelines MICE 3.747 7.580x10° 0.670
e Our solution MissForest 3.863 3.027 0.941
- MR-HDMM: hierarchical deep generative models for MR-MTS! g g g @ Softlmpute 5715 0086 0759
Deep Learnine PYM 3.714 3.027 0.782
@—»D—» 3 . zz I @ B cclines ©  MR-DMM 3.710 3.021 0.696
sy sy A f A HDMM 3.790 3.100 0.750
MODEL AT : i
g "3 G MR-HDMM 3.982 2.921 0.626

o MR-HDMM — Multi-Rate Hierarchical [Deep Markov Model

— Capturing underlying data generation process
— Learned by variational inference methods

e Key components to learn the [afent hierarchical structures of MR-MTS
- Learnable switches
+ Goal: to let higher-layer states act as sum- (7! ( @ Reuse @
marized representations
+ Switches will trigger updates only if enough @ st =0
information is got from lower layers
- Auxiliary connections
+ Solution: connecting higher latent layers to lower rate time series
* Multi-scale dependencies in lower-rate M TS will not be masked by higher-rate
MTS through bottom-up connections in the model

O Latent variable - e Lower bound of log-likelihood for all generative models (higher values are better)

Observation x

DMM MR-DMM HDMM MR-HDMM

—1.54 2.062 10.54 15.27
2.37 14.37 1'7.25 33.62
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<> Inference RNN h

sh=1 e (Goal: to maximize the variational evidence lower bound (ELBO)

VISUALIZAT

e Latent hierarchical structure learned by MR-HDMM
— From first 48 hours of an admission in MIMIC-III

* Solution: an update-and-reuse mechanism
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+ Goal: to effectively capture multi-scale temporal dependencies in MR-MTS e Network design for structured and powerful approximations to the posterior

— Keeping the Markov properties and the same distribution type of z as 6 in ¢
— Inheriting switches s from 60 to ¢ (¢s = 65)
— Capturing MR-MTS observations by using multiple RNNs 10 20

Hours

e Jointly learning all parameters by stochastic backpropagation' and ancestral sampling

Network Tvpe Usage Input Variational Approximation — From a 1-year climate observation in USHCN
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e The final factorized function to optimize: a summation of expectations ot — Blue and Red part: update; White part: reuse

— Conditional loglikelihood
— KL terms over time steps ¢ and layers |
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et Xttt Bge (1 log o, (w]21) + Higher layers update less frequently and capture longer-term dependencies
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— Green histograms: precipitation time series
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+ Precipitations = Significant temporal changes captured by the higher layer




