Hierarchical Deep Generative Models for Multi-Rate Multivariate Time Series

Zhengping Che*, Sanjay Purushotham*, Guangyu Li*, Bo Jiang, Yan Liu
Department of Computer Science, University of Southern California (*equal contributions)
{zche, spurusho, guangyul, boj, yanliu.cs}@usc.edu

BACKGROUND & MOTIVATION

- MR-MTS (multi-rate multivariate time series)
- Time series with different sampling rates
- May from multiple data sources/sensors
- Many real-world applications
- * Healthcare: vital signs in ICU/lab tests
- * Climate: daily/seasonal observations
- * Financial forecasting, mechanical maintenance, business analysis...

MR-MTS from Intensive Care Units

- Modeling MR-MTS is challenging
- Data of different sampling rates
- Multi-scale temporal dependencies
- Complex underlying generation mechanism
- How can we effectively forecast/interpolate unobserved values in MR-MTS? (E.g., $\boldsymbol{x}_{1:T}^{1:L}$: MR-MTS observations of L sampling rates and T time steps)
- Single rate models? (Kalman Filter, VAR, DMM, etc.)
- * Ignoring dependencies across different rates
- Simple imputations? (MICE, MissForest, etc.)
- * May introduce unrelated or hide natural dependencies
- Multi-rate discriminative models? (PLSTM, HM-RNN, etc.)
- * Not able to learn how the data is generated
- Our solution
- MR-HDMM: hierarchical deep generative models for MR-MTS!

MODEL AT A GLANCE

- MR-HDMM Multi-Rate Hierarchical Deep Markov Model
- Capturing underlying data generation process
- Learned by variational inference methods
- Key components to learn the *latent hierarchical structures* of MR-MTS
- Learnable switches
- * Goal: to let higher-layer states act as sum- (z_{t-1}^l) marized representations
- * **Solution**: an *update-and-reuse* mechanism
- * Switches will trigger updates only if enough information is got from lower layers
- Auxiliary connections
- * Goal: to effectively capture multi-scale temporal dependencies in MR-MTS
- * **Solution**: connecting higher latent layers to lower rate time series
- * Multi-scale dependencies in lower-rate MTS will not be masked by higher-rate MTS through bottom-up connections in the model
- Jointly learning all parameters by *stochastic backpropagation*¹ and *ancestral sampling*

REFERENCES & ACKNOWLEDGMENTS

. Menne, M. J., et al. Long-term daily and monthly climate records from stations across the contiguous United States. CDIAC 2010.

- 1. Kingma, Diederik P., et al. Auto-encoding variational bayes. ICLR 2014.
- Johnson, Alistair EW, et al. *MIMIC-III*, a freely accessible critical care database. Sci. Data 2016.
- 4. Krishnan, Rahul G., et al. *Deep kalman filters*. arXiv:1511.05121.
- 5. Chung, Junyoung, et al. *Hierarchical multiscale recurrent neural networks*. arXiv:1609.01704.
- 6. Neil, Daniel, et al. Phased LSTM: Accelerating recurrent network training for long or event-based sequences. NIPS 2016.
- This work is supported in part by NSF Research Grant IIS-1254206 and IIS-1539608, and MURI Grant W911NF-11-1-0332. The views and conclusions should not be interpreted as representing the official policies of the funding agency or the U.S. Government.

MODEL PART I: GENERATION MODEL

• A generation model (θ) with **transition** and **emission** framework

- Transition using states z to capture the latent temporal dependencies
- Transition distribution of z: multivariate Gaussian
- **Emission** generating observations x from states z
- Emission distribution of x: multinomial/Gaussian for discrete/continuous data
- Joint probability of MR-MTS observations and latent states/switches $p_{\theta}\left(\boldsymbol{x}_{1:T}^{1:L}, \boldsymbol{z}_{1:T}^{1:L}, \boldsymbol{s}_{1:T}^{2:L} | \boldsymbol{z}_{0}^{1:L}\right) = \prod_{t=1}^{T} \prod_{l=1}^{L} p_{\theta_{\boldsymbol{x}}}\left(\boldsymbol{x}_{t}^{l} | \boldsymbol{z}_{t}^{1:l}\right) \cdot \prod_{t=1}^{T} p_{\theta_{z}}\left(\boldsymbol{z}_{t}^{1} | \boldsymbol{z}_{t-1}^{1}\right) \cdot \prod_{t=1}^{T} \prod_{l=2}^{L} p_{\theta_{s}}\left(\boldsymbol{s}_{t}^{l} | \boldsymbol{z}_{t-1}^{l}, \boldsymbol{z}_{t}^{l-1}\right) p_{\theta_{z}}\left(\boldsymbol{z}_{t}^{l} | \boldsymbol{z}_{t-1}^{l}, \boldsymbol{s}_{t}^{l}\right)$
- Solving marginal MLE? ⇒ Stochastic variational inference!

MODEL PART II: INFERENCE NETWORK

• An inference network (ϕ) to mimic the structure of the generation model

• Goal: to maximize the variational evidence lower bound (ELBO) $\mathbb{E}_{q_{\phi}}\left[\log p_{\theta}\left(\boldsymbol{x}_{1:T}^{1:L}|\boldsymbol{z}_{0:T}^{1:L}\right)\right] - D_{\mathrm{KL}}\left(q_{\phi}\left(\boldsymbol{z}_{1:T}^{1:L},\boldsymbol{s}_{1:T}^{2:L}|\boldsymbol{x}_{1:T}^{1:L},\boldsymbol{z}_{0}^{1:L}\right) \middle| p_{\theta}\left(\boldsymbol{z}_{1:T}^{1:L},\boldsymbol{s}_{1:T}^{2:L}|\boldsymbol{z}_{0}^{1:L}\right)\right)$

- Network design for structured and powerful approximations to the posterior
- Keeping the Markov properties and the same distribution type of z as θ in ϕ
- Inheriting switches s from θ to ϕ ($\phi_s = \theta_s$)
- Capturing MR-MTS observations by using multiple RNNs

Network Type	Usage	Input for $oldsymbol{h}_t^l$	Variational Approximation for \boldsymbol{z}_t^l
Forward RNN (filtering)	Forecasting	$oldsymbol{x}_{1:t}^{l}$	$q_{\phi}\left(oldsymbol{z}_{t}^{l} oldsymbol{z}_{t-1}^{l},oldsymbol{z}_{t}^{l-1},s_{t}^{l},oldsymbol{x}_{1:t}^{1:L} ight)$
Bi-directional RNN	Interpolation	$oldsymbol{x}_{1:T}^{l}$	$q_{\phi}\left(oldsymbol{z}_{t}^{l} oldsymbol{z}_{t-1}^{l},oldsymbol{z}_{t}^{l-1},s_{t}^{l},oldsymbol{x}_{1:T}^{1:L} ight)$

- The final factorized function to optimize: a summation of expectations of
- Conditional loglikelihood
- KL terms over time steps t and layers l
- $\sum_{t=1}^{T} \mathbb{E}_{\mathcal{Q}^{*}(\boldsymbol{z}_{t-1}^{1})} D_{\mathrm{KL}} \left(q_{\phi} \left(\boldsymbol{z}_{t}^{1} | \boldsymbol{x}_{1:T}^{1:L}, \boldsymbol{z}_{t-1}^{1} \right) \middle\| p_{\theta} \left(\boldsymbol{z}_{t}^{1} | \boldsymbol{z}_{t-1}^{1} \right) \right) + \sum_{t=1}^{T} \sum_{l=2}^{L} \mathbb{E}_{\mathcal{Q}^{*}(\boldsymbol{z}_{t-1}^{1}, \boldsymbol{z}_{t}^{l-1})} D_{\mathrm{KL}} \left(q_{\phi} \left(\boldsymbol{z}_{t}^{l} | \boldsymbol{x}_{1:T}^{1:L}, \boldsymbol{z}_{t-1}^{l-1} \right) \middle\| p_{\theta} \left(\boldsymbol{z}_{t}^{1} | \boldsymbol{z}_{t-1}^{1}, \boldsymbol{z}_{t}^{l-1} \right) \right)$

 $\sum_{t=1}^T \sum_{l=1}^L \mathbb{E}_{\mathcal{Q}^*\left(oldsymbol{z}_t^{1:l}
ight)} \log p_{ heta_x}\left(oldsymbol{x}_t^l | oldsymbol{z}_t^{1:l}
ight)$

QUANTITATIVE RESULTS

• Two real-world datasets from healthcare and climate domains

•	Dataset	# of	Sampling Rates	# of Variables	Time Series
	Name	Samples	(HSR/MSR/LSR)	of Each Rate	Length
-	MIMIC-III ²	10 709	1/4/12 Hours	7/11/44	72 Hours
	USHCN ³	100	1/5/10 Days	70/69/69	365 Days

• Forecasting performance on USHCN (Mean Squared Error(MSE))

	Method \ Rate	All	HSR	MSR	LSR
	Kalman Filter (KF)	1.236	1.254	1.190	1.148
Single-Rate Baselines	Vector Autoregression (VAR)	2.415	2.579	1.921	1.748
	Deep Markov Model (DMM) ⁴	0.795	0.608	0.903	0.877
	HM-RNN ⁵	0.692	0.594	1.151	0.775
	LSTM	0.849	0.688	0.934	0.928
	PLSTM ⁶	0.813	0.710	0.870	0.915
Multi-Rate Baselines	Multiple KF	1.212	1.082	1.727	1.518
	Multi-Rate KF	0.628	0.542	0.986	0.799
	Multi-Rate DMM (MR-DMM)	0.667	0.611	0.847	0.875
	Hierarchical DMM (HDMM)	0.626	0.568	0.815	0.836
	MR-HDMM	0.591	0.541	0.742	0.795

• Interpolation performance (Mean Squared Error(MSE))

Method \	Dataset	MIMIC-III In-Sample Out-Sample		USHCN In-Sample
	Simple-Mean	3.812	3.123	0.987
Imputation Baselines	CubicSpline	3.713	$3.212{\times}10^4$	0.947
	MICE	3.747	7.580×10^{2}	0.670
Daseimes	MissForest	3.863	3.027	0.941
	SoftImpute	3.715	3.086	0.759
Deep Learning Baselines MR	DMM	3.714	3.027	0.782
	MR-DMM	3.710	3.021	0.696
	HDMM	3.790	3.100	0.750
MR-H	DMM	3.582	2.921	0.626

• Lower bound of log-likelihood for all generative models (higher values are better)

	DMM	MR-DMM	HDMM	MR-HDMM
MIMIC-III	-1.54	2.62	10.54	15.27
USHCN	2.37	14.37	17.25	33.62

- From a 1-year climate observation in USHCN

VISUALIZATIONS

- Blue and Red part: *update*; White part: *reuse*
- * Higher layers update less frequently and capture longer-term dependencies
- Green histograms: precipitation time series
 - * Precipitations ⇒ Significant temporal changes captured by the higher layer