

DBUS: Human Driving Behavior Understanding System

Max Guangyu Li^{‡*}, Bo Jiang^{†*}, Zhengping Che[†], Xuefeng Shi[†], Mengyao Liu[†], Yiping Meng[†], Jieping Ye[†], Yan Liu[‡] †Didi Chuxing [‡]University of Southern California

INTRODUCTION

- What is human driving behavior understanding?
- Understand how humans drive and interact with environments
- Driving behavior understanding in intelligent transportation systems
- Autonomous driving (AD)
- Vehicle to Vehicle (V2V) and Vehicle to Infrastructure (V2I)
- Driving safety monitoring system Top priority for ride-sharing platform & fleet management

- Why human driving behavior understanding is essential?
- AD: Proposing human-like P&C strategies, etc.
- V2V/V2I: Providing insight for an efficient and convenient design of systems, etc.
- Driving safety monitoring system: Real-time driving safety monitoring, etc.
- Key challenges come from
- Sophisticated real-world traffic scenarios Environment
- Huge diversities of different driving styles Drivers

MOTIVATION

- Collection of human driving data on ride-sharing platform
- *Heterogeneous* including videos, GPS/IMU signals, etc.
- Large-scale offering potential for in-depth analysis
- Major challenges of human driving understanding
- Handling different complex tasks
- Multi-level analyzation
- Heterogeneous data source System efficiency
- Existing works for human driving behavior understanding
- Only focus on relatively small dataset
- Only analysis it at single level or on subset of tasks
- Only leverage single type of data
- Our proposed solution
- DBUS: Human Driving Behavior Understanding System

PROBLEM FORMULATION

- Input Human driving scenario $\mathcal{D} = (\mathbf{V}, \mathbf{S})$ with time horizon T
- $\mathbf{V} = \{\mathbf{v}_t\}_{t=1}^T$ refers frames from front-view camera
- $\mathbf{S} = \{\mathbf{s}_t\}_{t=1}^T$ denotes GPS/IMU signals
- Output Three-level structured representation of driving behavior $\mathcal{B} = (\mathbf{M}, \mathbf{W}, \mathbf{A})$
- $\mathbf{M} = \{\mathbf{m}_t\}_{t=1}^T$ refers pre-defined basic driving actions
- $\mathbf{W} = \{\mathbf{w}_t\}_{t=1}^T$ refers pre-defined driver's intentions
- $\mathbf{A} = \{\mathbf{a}_{mask}^t, \mathbf{a}_{obi}^t\}_{t=1}^T$ denotes driver's attention object categories

REFERENCES

- AB Ellison, et al. *Driver characteristics and speeding behaviour*. In Australasian Transport Research Forum (ATRF), 33rd, 2010, Canberra, ACT, Australia, 2010.
- 2. Dariu M Gavrila. *Pedestrian detection from a moving vehicle*. In European conference on computer vision, pages 37–49. Springer, 2000.
- 3. Jiangpeng Dai, et al. Mobile phone based drunk driving detection. In Pervasive Computing Technologies for Healthcare (PervasiveHealth), pages 1–8. IEEE, 2010.
- 4. Minh Van Ly, et al. Driver classification and driving style recognition using inertial sensors. In Intelligent Vehicles Symposium (IV), 2013 IEEE, pages 1040–1045. IEEE, 2013. 5. Luis M Bergasa, et al. Drivesafe: An app for alerting inattentive drivers and scoring driving behaviors. In Intelligent Vehicles Symposium Proceedings, IEEE, 2014.
- 5. Pengyang Wang, et al. You are how you drive: Peer and temporal-aware representation learning for driving behavior analysis. In Proceedings of the 24th ACM SIGKDD, pages 2457–2466. ACM, 2018.

OVERVIEW

System overview of DBUS

- Major tasks & applications
- Driving behavior analysis Joint inference of W and A
- Driving scenario search & retrieval Given \mathcal{B} , retrieve top-K relevant \mathcal{D} from a *massive* database

SYSTEM ARCHITECTURE

• System architecture of *DBUS*

- Major modules of DBUS
- Perception Vision perception and 3D reconstruction of driving scenarios, etc.
- Driving Behavior Analysis (core module!!!) Generates 3-level structured representation
- Driving Scenario Retrieval Efficient behavior-based retrieval of relevant driving scenarios
- Workflow of DBUS
- Feed $\mathcal{D} \rightarrow \mathbf{Perception} \rightarrow \mathcal{P} = (\mathbf{O}, \mathbf{D}, \mathbf{L})$
- O: Semantic masks of detections
- D: Distance between ego-vehicle and the nearest front vehicle
- L: Ego-vehicle's relative location on the road based on the lane perception
- 2. Feed P + GPS/IMU -> Driving Behavior Analysis -> B
- . Driving Scenario Retrieval takes \mathcal{B} and returns top-K relevant \mathcal{D}

DRIVING BEHAVIOR ANALYSIS

- Basic driving action inference
- Based on S with a rule-based manner
- Intention & attention inference
- Introduced a deep model INFER
- * Attention proposal network (APN)
- * Intention inference network
- Input Set of features $* \{\mathbf{o}_t, \mathbf{d}_t, \mathbf{m}_t, \mathbf{l}_t, \mathbf{s}_{yaw}^t, \mathbf{s}_{acc}^t, \mathbf{s}_{speed}^t\}_{t=1}^T$
- Output $\{\mathbf{w}_t\}_{t=1}^T \& \{\mathbf{a}_{mask}^t\}_{t=1}^T$
- * We use $\{\mathbf{a}_{mask}^t\}_{t=1}^T + \{\mathbf{o}_t\}_{t=1}^T$ to get $\{\mathbf{a}_{obj}^t\}_{t=1}^T$
- Attention mask prediction and intention prediction

	MSE (Attention masks)	ACC (Intentions)
SVM	_	0.193
XGBoost	_	0.258
INFER-NO-SM	_	0.276
INFER-ONLY-SM	0.032	0.693
INFER-NO-ATTN	_	0.628
INFER	0.025	0.772

Following

CASE STUDY

Attention inferred by DBUS

Retrieved driving scenario

