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Abstract

Multi-Rate Multivariate Time Series (MR-MTS)
are the multivariate time series observations
which come with various sampling rates and en-
code multiple temporal dependencies. State-space
models such as Kalman filters and deep learning
models such as deep Markov models are mainly
designed for time series data with the same sam-
pling rate and cannot capture all the dependencies
present in the MR-MTS data. To address this chal-
lenge, we propose the Multi-Rate Hierarchical
Deep Markov Model (MR-HDMM), a novel deep
generative model which uses the latent hierarchi-
cal structure with a learnable switch mechanism to
capture the temporal dependencies of MR-MTS.
Experimental results on two real-world datasets
demonstrate that our MR-HDMM model outper-
forms the existing state-of-the-art deep learning
and state-space models on forecasting and inter-
polation tasks. In addition, the latent hierarchies
in our model provide a way to show and interpret
the multiple temporal dependencies.

1. Introduction

Multivariate time series (MTS) analysis (Hamilton, 1994;
Reinsel, 2003) has attracted a lot of attention in machine
learning, signal processing, and other related areas, due to
its impact and usefulness in many real world applications
such as healthcare, climate, and financial forecasting. State-
space models such as Kalman filters (Kalman et al., 1960)
and hidden Markov models (Rabiner, 1989) have been de-
veloped to model MTS and have shown promising results
on prediction tasks such as forecasting and interpolation.
However, in many applications, the MTS observations usu-
ally come from multiple sources and are often characterized
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by various sampling rates. For example, in healthcare, vital
signs such as heart rate are sampled frequently, while lab
results such as pH are measured infrequently; in finance,
the stock prices are sampled daily or even more frequently,
while macro-economic data such as employment, GDP are
sampled monthly or quarterly. Such time series observations
with either regular or irregular sampling rates are termed as
Multi-Rate Multivariate Time Series (MR-MTS) data. Mod-
eling the MR-MTS using state-space models is challenging
since MR-MTS naturally comes with multiple temporal
dependencies and these dependencies may not have direct
relationship to the sampling rates. That is, the long and
short-term temporal dependencies may be associated with
a few or all the time series data with different sampling
rates. Capturing these temporal dependencies is important
as they model the underlying data generation mechanism,
and they impact the interpolation and forecasting tasks. Up-
sampling or downsampling MR-MTS to a single rate time
series cannot address this challenge, since these simple tech-
niques may artifically introduce or remove some naturally
occurring dependencies present in MR-MTS. For example,
forward/backward imputation will introduce long-term de-
pendencies. Therefore, building models which can capture
multiple temporal dependencies directly from the MR-MTS
data is still an open problem in the time series analysis field.

Deep learning models such as recurrent neural networks
(RNNs) (Hochreiter & Schmidhuber, 1997) have emerged
as successful models for time series analysis (Graves et al.,
2013; Mikolov et al., 2010) and sequence modeling applica-
tions (Socher et al., 2011; Xu et al., 2015). While deep dis-
criminative models (Hermans & Schrauwen, 2013; Martens
& Sutskever, 2011; Pascanu et al., 2013; Chung et al., 2016)
have been shown to model complex non-linear temporal
dependencies present in MTS, deep generative models (Gan
etal.,2015; Rezende et al., 2014) have become more popular
since they are intuitive, interpretable and are more powerful
than their discriminative counterparts (Durbin & Koopman,
2012) and they capture the data generation process. Despite
their success with single-rate time series data, the existing
deep generative models are not suitable for modeling MR-
MTS as they are not designed to capture multiple temporal
dependencies from different sampling rates.

Recently, latent hierarchical structure learning based
on deep learning models have led to remarkable ad-
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vances in capturing temporal dependencies from sequential
data (El Hihi & Bengio, 1995; Chung et al., 2016; Koutnik
et al., 2014). Motivated by these models, we propose a novel
deep generative model termed as Multi-Rate Hierarchical
Deep Markov Model (MR-HDMM), which learns multiple
temporal dependencies directly from MR-MTS by jointly
modeling time series with different sampling rates. MR-
HDMM learns the latent hierarchical structures along with
learnable switches and captures the data generation process
of MR-MTS. It simultaneously learns a inference network
and a generative model by leveraging a structured variational
approximation parameterized by recurrent neural networks
to mimic the posterior distribution. The data generation pro-
cess of MR-HDMM can automatically infer the hierarchical
structures directly from data, which is extremely helpful for
downstream tasks such as interpolation and forecasting.

In summary, we develop a first-of-a-kind novel deep gener-
ative model called MR-HDMM to systematically capture
the multiple temporal dependencies present in MR-MTS by
using hierarchical latent structures and learnable switches.
In addition, we also propose a new structured inference
network for MR-HDMM. A comprehensive and systematic
evaluation of the MR-HDMM model is conducted on two
real-world datasets to demonstrate the state-of-the-art per-
formance in forecasting and interpolation tasks. Finally, we
interpret the learnt latent hierarchies from MR-HDMM to
study the captured temporal dependencies.

2. Related Work

State-space models such as Kalman filters (KF) (Kalman
et al., 1960), and hidden Markov models (HMMs) (Ra-
biner, 1989) have been widely used in various time series
applications such as speech recognition (Rabiner, 1989),
atmospheric monitoring (Houtekamer & Mitchell, 2001),
and robotic control (Negenborn, 2003). These approaches
successfully model regularly sampled (i.e. sampled at the
same frequency/rate) time series data, however, they cannot
be directly used for MR-MTS as they cannot simultane-
ously capture the multiple temporal dependencies present
in MR-MTS. To handle MR-MTS with state-space models,
researchers have extended KF models and proposed multi-
rate Kalman filters (MR-KF) (Armesto et al., 2008; Safari
et al., 2014). MR-KF approaches either fuse the data with
different sampling rates or fuse the estimates for KFs trained
on each sampling rate. Many of these MR-KF approaches
aim to improve the estimates for the highest sampled rate
data and do not focus on capturing the multiple temporal
dependencies present in MR-MTS. Moreover, the linear
transition and emission functionality of the MR-KF models
limits their usability on complex real-world data.

Recently, researchers have resorted to deep learning mod-
els (Chung et al., 2016; Krishnan et al., 2015; Gan et al.,

2015) to model the non-linear temporal dynamics of real-
world and sequential data. Discriminative models such
as hierarchical recurrent neural network (El Hihi & Ben-
gio, 1995), hierarchical multiscale recurrent neural network
(HM-RNN) (Chung et al., 2016), and phased long short-term
memory (PLSTM) (Neil et al., 2016) have been proposed to
capture temporal dependencies of sequential data. However,
these discriminative models do not capture the underlying
data generation process and therefore are not suited for
forecasting and interpolation tasks. Deep generative mod-
els (Rezende et al., 2014; Krishnan et al., 2015; Gan et al.,
2015) have been developed to model the data generation pro-
cess of the complex time series data. Krishnan et al. (2015)
proposed deep Kalman filter, a nonlinear state-space model,
by marrying the ideas of deep neural networks with Kalman
filters. Fraccaro et al. (2016) introduced stochastic recurrent
neural network (SRNN) which glued a RNN with a state
space model together to form a stochastic and sequential
neural generative model. Even though these deep generative
models are the state-of-the-art approaches to obtain the un-
derlying data generation process, they are not designed to
capture all the temporal dependencies of MR-MTS. None
of the existing deep learning models or state-space models
can be directly used for modeling MR-MTS. Thus, in this
work, we develop a deep generative model which leverages
the properties of the above discriminative and generative
models, to model the data generation process of MR-MTS
while also capturing the multiple temporal dependencies
using a latent hierarchical structure.

3. Our Model

In this section, we present our proposed Multi Rate-
Hierarchical Deep Markov Model (MR-HDMM). We first
clarify the notations and definitions used in this paper.

Notations Given a MR-MTS of L different sampling rates
and length T', we use a vector &} € R”" to represent the time
series observations of /th rate at time t. Here [ = 1,..., L,
t=1,...,T, and D, is the dimension of time series with
lth rate. The L sampling rates are in descending order, i.e.,
!l = 1and! = L refer to the highest and lowest sampling
rates. To make the notations succinct, we use :c%, to denote
all observed time series of [th to !th rates and from time ¢
to t'. We use 6 and ¢,y to denote the parameter sets for
generation model py and inference network gy respectively.
we use L layers of RNNs in the inference network to model
MR-MTS of L different sampling rates. We use Lz g, the
number of hidden layers in both generation model and infer-
ence network, to control the depth of the learnt hierarchical
structures. In the rest of this paper we take Ly g = L for
model simplicity, but in practice they are not tied. The latent
states or variables are denoted by z, s and h. Their super-
script and subscript respectively indicate the corresponding
layer(s) and the time step(s) (e.g., z1:k, s¥L, hl).
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Figure 1. Generation model and structured inference network (with the filtering setting) of our proposed MR-HDMM for MR-MTS. The
switches on incoming edges to a node (z}) are the same, which is shown as st in Figure 2.

Figure 1 illustrates our MR-HDMM model which consists
of the generation model and inference network. MR-HDMM
captures the underlying data generation process by using the
variational inference methods (Rezende et al., 2014; Kingma
& Welling, 2013) and learns the latent hierarchical struc-
tures using learnable switches and auxiliary connections
to adaptively encode the dependencies across the hierar-
chies and the timestamps. In particular, the switches use
an update-and-reuse mechanism to control the updates of
the latent states of a layer based on their previous states
(i.e., utilizing temporal information) and the lower latent
layers (i.e., utilizing the hierarchy). The switch triggers an
update of the current states if it gets enough information
from lower-level states, otherwise it reuses the previous
states. Thus, the higher-level states act as summarized repre-
sentations over the lower-level states and the switches help
to propagate the temporal dependencies. The auxiliary con-
nections (dashed lines in Figure 1(a)) between MR-MTS
of different sampling rates and different latent layers help
the model effectively capture the short-term and long-term
temporal dependencies. Without the auxiliary connections,
the higher-rate time series may mask the multi-scale de-
pendencies present in the lower-rate time series data while
propagating dependencies through bottom-up connections.
Note that, the auxiliary connections are not related to the
sampling rate of MR-MTS, and the sampling rate of higher-
rate variable need not be a multiple of sampling rate of
the lower-rate variable. Due to the flexibility of auxiliary
connections, our MR-HDMM can also handle irregularly
sampled time series data or missing data. We can a) zero-out
the missing data points in the inference network and remove
the corresponding auxiliary connections in the generation
model during training, and b) interpolate missing values by
adding auxiliary connections in the well-trained model.

Figure 2. The switch mechanism for updating the latent states z.
in MR-HDMM. Left: The switch structure; Middle: Switch on
(st = 1); Right: Switch off (s} = 0).

3.1. Generation Model

Figure 1(a) shows the generation model of our MR-HDMM.
The generation process of our MR-HDMM follows the tran-
sition and emission framework, which is obtained by apply-
ing deep recurrent neural networks to non-linear continuous
state space models. The generation model is carefully de-
signed to incorporate the switching mechanism and auxil-
iary connections in order to capture the multiple temporal
dependencies present in MR-MTS.

Transition We design the transition process of the latent
state z to capture the hierarchical structure for multiple
temporal dependencies with learnable binary switches s.
For each non-bottom layer [ > 1 and time step ¢t > 1,
we use a binary switch state s! to control the updates of
the corresponding latent states z!, as shown in Figure 2.
st is obtained based on the values of the previous latent
states z!_; and the lower layer latent states ~! by a de-
terministic mapping s, = I (go, (2!_,, 2,7 ") > 0). When
the switch is on (i.e., update operation, sé = 1), 2l is up-
dated based on z!_; and z.~! through a learnt transition
distribution. We use a multivariate Gaussian distribution
N (ut, Szl 20 ) with mean and covariance given
by (!, 1) = gg. (2L, 2/~ 1) as the transition distribution.
When the switch is off (i.e., reuse operation, si =0), zi will
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be drawn from the same distribution as its previous states
z! |, whichis N/ (ui_l, Ei_l). Note, unlike Chung et al.
(2016), we do not copy the previous state since our latent
states are stochastic. The latent states of the first layer (2{,7)
are always updated at each time step. In our model, g, is
parameterized by a multilayer perceptron (MLP), and gy,
is parameterized by gated recurrent units (GRU) (Chung
et al., 2014) to capture the temporal dependencies. With this
update-or-reuse transition mechanism, higher latent layers
tend to capture longer-term temporal dependencies through
the bottom-up connections in the latent layers.

Emission Multi-rate multivariate observation x needs to
be generated from z in the emission process. In order to
embed the multiple temporal dependencies in the generated
MR-MTS, we introduce auxiliary connections (denoted by
the dashed lines in Figure 1(a)) from the higher latent layers
to the lower rate time series. That is, time series of /th rate
at time ¢ (i e., xl) is generated from all latent states up to
lth layer 2/ through emission distribution IT (x}|z}; 6,,).
The choice of emission distribution II is flexible and de-
pends on the data type. Multinomial distribution is used
for categorical data, and Gaussian distribution is used for
continuous data. Since all the data in our tasks are contin-
uous, we use Gaussian distribution where the mean u(“’)t
and covariance E(m)i are determined by gy, (2}, which
is parameterized by an MLP.

To summarize, the overall generation process is described
in Algorithm 1. The parameter set of generation model is
0 = {0.,0.,05}. Given this, the joint probability of MR-
MTS and the latent states/switches can be factorized by the
following Equation (1).
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In order to obtain the parameters of MR-HDMM, we need
to maximize the log marginal likelihood of all MR-MTS
data points, which is the summation of the log marginal
likelihood £(0) = logpe (x}:%]2") of each MR-MTS
data point z1:%. The log marginal likelihood of one data
point can be achieved by integrating out all possible z and
s in Equation (1). Since s are deterministic binary variables,
integrating them out can be done straightforwardly by taking
their values in the likelihood. However, stochastic variable

Algorithm 1 Generation model of MR-HDMM

~N(0,T)
;T do

1: Initialize 2§"
2: fort=1,...
3 (“%72%) = go. (Zg,l)

4:  zl ~ N(utl, 3}) {Transition of the first layer.}
5

6

forl =2,---,Ldo
St —]I(gg (zt 17zt ) > 0)
1 I—1\ gl
fsp=1
7 A go.(zi_1,2; ) ifsy
(s, 1) {(ui_hEi_l) otherwise.
8: zL~ N (ui,Efg) { Transition of other layers. }
9: end for
10: forl=1,---,Ldo
l 1
1 (L=, = go, (217
12: xt ~ N (,u(m)i,E(m)t) {Emission. }
13:  end for
14: end for

z cannot be analytically integrated out. Thus, we resort
to the well-known variational principle (Jordan, 1998) and
introduce our inference network below.

3.2. Inference Network

We design our inference network to mimic the structure
of the generative model. The goal is to obtain an objec-
tive which can be optimized easily and which can make
the model parameter learning amenable. Instead of directly
maximizing £(6) w.r.t §, we build an inference network
with a tractable distribution g4, and maximize the varia-
tional evidence lower bound (ELBO) F (6, ¢) < L(6) with
respect to both # and ¢. Note, ¢ is the parameter set of the
inference network which will is formally defined at the end
of this section. The lower bound can be written as (please
refer to the supplementary materials for full derivation):

F(0,9) = Eq, [logp(’ (“’%‘Z%)}

— DkL (% (z% T, ST |®TT, Z0° ) Hpe (Zl T, 817|120 L))
@)
where the expectation of the first term is under
d¢ (zl LlehL 2 ) To get a tight bound and an accurate
estimate from our MR-HDMM, we need to properly design
a new inference network as using the existing inference
networks from SRNN (Fraccaro et al., 2016) or DMM (K-
ishnan et al., 2015) is not applicable for MR-MTS. In the
following, we show how we design the inference network
(Figure 1(b)) to obtain a good structured approximation to
the posterior. First, we maintain the Markov properties of z

in the inference network, which leads to the factorization:

T

1:L

q¢ (21 T,31 T|ﬂ31 T>z0 ) = I |Q¢ (Zz
t=1

1:L
|zt 1, L1:T

3)
We then leverage the hierarchical structure and in-
herit the switches from the generation model into the
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Table 1. Comparison of structured inference networks.

Inference network Implemented with RNN output Captured in h,  Variational approximation for z!
filtering forward RNN pforvard z\., do (z,lt |z,l5_ 1 zi_l ,sb ek tL)
smoothing backward RNN pbackward ., as (2t zt_1, 207", st ®lif)
bi-direction bi-directional RNN [hf‘“w‘"", hb“kward] 2. qe (zf |2}, z,lS gl gk an)

inference network. That is, the same gy, from the
generation model is used in the inference network,
: 1)1 -1 . 1:L) _ 1)1 -1\ _
Le., g¢ (st‘zt 17Zt a’lT) = dg, (st|zt 1) %t ) =
po. (st|zl_1,z"). Then, for each term in the righthand
side of Equation (3) and forallt = 1,--- ,T', we have:

1:L
q¢ (Z’t ’

_ 1.1 1:L
=q¢ zt|zt—17a31:T

L
1l I-1 _1:L Il -1 1 _1:L
: qe st|zt—17zt » L1:T | o ztlzt—lazt » Sty L1:T

1:L
‘Zt 1, L1:T

_ 1.1 1:L
_q¢ zt|zt71>m1:T

L

1.1 -1 11 I-1 1 _1:L 4
: Po, | 5tlzi-1, 2 qs (ztlzio1, 20 s, xiir 4)
=2

Thus, the inference network can be factorized by Equa-
tion (3) and (4). Note, we also can factorize generative
model based on Equation (1). Given these, we further fac-
torize the ELBO in Equation (2) as a summation of expecta-
tions of conditional log likelihood and KL divergence terms
over time steps and hierarchical layers:

L
F(6,9) :ZZEQ* 1) log po,, (mt‘z )

t=1 [=1

T
+ 3 Eqeer ) D (a6 (2t ) foo (2 2t) )

t
2 Eouap .t

=2
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-

+

M~

t

DxL (% (Zt‘l'l Fr 2 1azt )Hpe (Zt ‘Zt 172é_1)) %)
where Q* (-) denotes the marginal distribution of (-) from

g¢. The details about the factorization and the marginalized
distribution are provided in the supplementary materials.

Il
-

Parameterization of inference network We parameter-
ize the inference network and construct the variational ap-
proximation g, (zf|zi_, 2!, s}, z1/) used in Equation 5
by deep learning models. First, we use L RNNs to cap-
ture MR-MTS with L different sampling rates such that
each rate is modeled by one RNN model separately. Sec-
ond, to obtain /th latent states 2! of the inference network
at time step ¢, we not only use the previous latent states
z!_| and the lower layer latent states 2.~ * but also take the
Ith RNN output denoted by h! as an input. Third, we reuse

the same latent state distribution and switch mechanism
from the generation model to generate z of the inference
network. To be more specific, zi is drawn from a multi-
variate normal distribution, where the mean and covariance
are reused from those of z!_; if s. = 1 and [ > 1, other-
wise the mean and covariance are modeled by gated recur-
rent units (GRU) with input [ht, 24, zt ] The choice
of the RNN models for h! affects what and how the in-
formation at other time steps is considered in the approxi-
mation at time ¢, i.e. the form of g4 (2}|2f_, 2, ", s, 21iF).
Inspired by Krishnan et al. (2016), we construct the vari-
ational approximation in three settings (filtering, smooth-
ing, bi-direction) for forecasting and interpolation tasks. In
filtering setting, we only consider the information up to
time ¢ (i.e., z1:F) using forward RNNs. By doing this, we
have h/ = RNN" (Rl

forward
= hl" aci) and thus

d¢ (Zi‘ziflazilt ' si,m%%) = g (z”ziflazi ! SLm% tL)

The filtering setting does not use future information, so it is
suitable for forecasting task at future time step ¢’ > 7. For
interpolation tasks, we can use backward RNNs to utilize the
information after time ¢ (i.e., ;%) with h} — piMevr
RN N backward (hf+1backward l) or bi-directional RNNss to uti-

lize information across all time steps, which is x1: T, at any

1 forward , jbackward

time ¢t with h! = [ht ,hl ] These two models
lead to smoothing and bidirection settings, respectively. We
summarize the three inference networks in Table 1. We use
¢, and ¢, to denote the parameter sets related to h and z
respectively and use ¢ = {¢n, d.,ds = 05} to represent
the parameter set of the inference network.

3.3. Learning the Parameters

We jointly learn the parameters (6, ¢) of the generative
model py and the inference network g4 by maximizing the
ELBO in Equation (5). The main challenge in the optimiza-
tion is obtaining the gradients of all the terms under the
correct expectation i.e, Eg-. We use stochastic backpropa-
gation (Kingma & Welling, 2013) for estimating all these
gradients and train the model by stochastic gradient descent
(SGD) approaches. We employ ancestral sampling tech-
niques to obtain the samples z. That is, we draw all samples
z in a sequential way from time 1 to 7" and from layer 1 to
L. Given the samples from previous layer [ — 1 or previous
time ¢ — 1, the new samples at time ¢ and layer [ will be dis-
tributed according to the marginal distribution Q*. Notice
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Algorithm 2 Learning MR-HDMM with stochastic back-
propagation and SGD

Require: X: a set of MR-MTS of L sampling rates; Initial (6, ¢)
1: while not converged do

2:  Choose a random minibatch of MR-MTS X’ C X
3:  for each sample 1% € X' do
4 Compute hi% by inference network ¢y, on input 1'%
5: Sample zé/-z ~N(0,1)
6: fort=1,---,Tdo
7: Estimate ,utl(d)), 2%((/)) by ¢., and pu;,Xf by 6.,
given samples z/t1: and h}
8: Based on g} (¢), >} <¢)7 pi, T, compute the gradient
of DxL (% (z¢]) ‘Po (Zzl\'))
9: Sample 2 ~N (/ﬁ(d’), Etl(¢))
10: forl=2,---,Ldo -
11: Compute st by 0, from samples z/i\_l and zi‘l
12: Estimate ,ui(w, Ei(d))/ky ¢-, and put, = by 6.,
given samples z/f:l, zifl, st,and h!
13: Based on ;Li(¢), Zi(@, pl, B compute the gradi-
ent of Dk, (q¢ (zi\) ‘ Do (Zé|)>
14: sample 2 ~ A (1, 54)
15: end for /-\
16: Compute the gradient of log pg, (mé |zt1‘l)
17: end for
18:  end for

19:  Update (0, ¢) using all gradients
20: end while

that all terms of Dkr, (q¢ (=i Hpg (zi\)) in Equation (5)
are KL divergences between two multivariate Gaussian dis-
tributions, and py, (w“zt”) is also a multivariate Gaussian
distribution. Thus, all the required gradients can be esti-
mated analytically from the samples drawn in our proposed
way. Algorithm 2 shows the overall learning procedure.

4. Experiments

We conducted experiments on two real-world datasets -
the MIMIC-III healthcare dataset and the USHCN climate
dataset - and answer the following questions: (a) How does
our proposed model perform when compared to the existing
state-of-the-art approaches? (b) To what extent, are the pro-
posed learnable hierarchical latent structure and auxiliary
connections useful to model the data generation process? (c)
How do we interpret the hierarchy learned by the proposed
model? In the remainder of this section, we will describe
the datasets, methods, empirical results and interpretations
to answer the above questions.

4.1. Datasets and Experimental Design

MIMIC-III dataset MIMIC-III is a public de-identified
dataset collected at Beth Israel Deaconess Medical Cen-

ter from 2001 to 2012 (Johnson et al., 2016). It contains
over 58,000 hospital admission records of 38,645 adults
and 7,875 neonates. For our experiments, we chose 10,709
adult admission records and extracted 62 temporal features
from the first 72 hours. These features had one of the three
sampling rates of 1 hour, 4 hours and 12 hours. To fill-in
any missing entries in our dataset we used forward or linear
imputation similar to Che et al. (2016). To ensure fair com-
parison, we only evaluate and compare all the models on the
original time-series (i.e. non-imputed data). Our main tasks
on the MIMIC-III dataset are forecasting on time series with
all rates, and interpolation of the low-rate time series values.

USHCN climate dataset The U.S. Historical Climatology
Network Monthly (USHCN) dataset (Menne et al., 2010)
is publicly available and consists of daily meteorological
data of 54 stations in California spanning from 1887 to
20009. It has five climate variables for each station: a) daily
maximum temperature, b) daily minimum temperature, c)
whether it was a snowy day or not, d) total daily precip-
itation, and e) daily snow precipitation. We preprocessed
this dataset to extract daily climate data for 100 consecutive
years starting from 1909. To get multi-rate time series data,
we extract 208 features and split all features into 3 groups
with sampling rates of 1 day, 5 days, and 10 days respec-
tively. This public dataset has been carefully processed by
National Oceanic and Atmospheric Administration (NOAA)
to ensure quality control and it has no missing entries. Our
tasks on this dataset are climate forecasting on all features
and interpolation on 5-day and 10-day sampled data.

Tasks We use the proposed MR-HDMM on two predic-
tion tasks: multi-rate time series forecasting and low-rate
time series interpolation. Since both datasets have 3 dif-
ferent sampling rates, we use HSR/MSR/LSR to denote
high/medium/low sampling rate respectively.

e Forecasting: Predict the future multivariate time series
based on its history. For MIMIC-III dataset, we predict
the last 24 hrs time series based on the first (previous) 48
hours time series data. In USHCN dataset, we forecast
the climate for the next 30 days based on the observations
of the previous year.

e [nterpolation: Fill-in the low rate time series based on
co-evolving higher rate time series data. For MIMIC-III
dataset, we down-sampled 8 features from MSR to LSR
and then performed interpolation task by up-sampling
these 8 features back to MSR. For USHCN dataset, the in-
terpolation task involved up-sampling the MSR and LSR
features to HSR features, i.e. up-sample 5-day and 10-day
data to 1-day. We demonstrate in-sample interpolation
(i.e. interpolation within training dataset) and out-sample
interpolation (i.e. interpolation in the testing dataset) on
the MIMIC-III dataset and in-sample interpolation on the
USHCN dataset.
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Baselines We compare MR-HDMM with several strong
baselines in these two tasks. Additionally, to show the advan-
tage of learnable hierarchical latent structure and auxiliary
connections, we simplify MR-HDMM into two other mod-
els for comparison: (a) Multi-Rate Deep Markov Models
(MR-DMM) which removes the hierarchical structure in la-
tent space; (b) Hierarchical Deep Markov Models (HDMM)
which drops the auxiliary connections between the lower-
rate time series and higher level latent layers. MR-DMM
and HDMM are discussed in the supplementary materials.

For forecasting tasks, we compare MR-HDMM with the
following baseline models:

e Single-rate: Kalman Filters (KF), Vector Auto-
Regression (VAR), Long-Short Term Memory
(LSTM) (Hochreiter & Schmidhuber, 1997), Phased-
LSTM (PLSTM) (Neil et al., 2016), Deep Markov
Models (DMM) (Krishnan et al., 2015) and Hi-
erarchical Multiscale Recurrent Neural Networks
(HM-RNN) (Chung et al., 2016).

o Multi-rate: Multiple Kalman Filters (MKF) (Drolet et al.,
2000), Multi-rate Kalman Filters (MR-KF) (Safari et al.,
2014), Multi-Rate Deep Markov Models (MR-DMM) and
Hierarchical Deep Markov Models (HDMM).

For interpolation task, we compare MR-HDMM with the
following baseline models:

o [mputation methods: Mean imputation (Simple-Mean),
Cubic Spline (CubicSpline) (De Boor et al., 1978), Mul-
tiple Imputations by Chained Equations (MICE) (White
et al., 2011), MissForest (Stekhoven & Biihlmann, 2011),
SoftImpute (Mazumder et al., 2010).

e Deep learning models: Deep Markov Models (DMM),
Multi-Rate Deep Markov Models (MR-DMM) and Hier-
archical Deep Markov Models (HDMM).

4.2. Evaluation and Implementation Details

We show the evaluation results of our MR-HDMM on the
following: (a) Forecasting: we generate the next latent state
using the learned transition distribution and then generate
observations from these new latent states; (b) Interpolation:
we use the mode of the approximated posterior in the gen-
eration model to generate the unseen data in low-rate time
series. (¢) Inference: we take multi-rate time series as the
input to obtain the approximate posterior of latent states.

For generation model in MR-HDMM, we use multivari-
ate Gaussian with diagonal covariance for both emission
distribution and transition distribution. We parameterized
the emission mapping gy, by a 3-layer MLP with ReLU
activations, the transition mapping gy, by gated recurrent
unit (GRU), and mapping gy, by a 3-layer MLP with ReLU
activations on the hidden layers and linear activations on
the output layer. For inference networks, we adopt filter-

ing setting for forecasting and bidirection setting for inter-
polation from Table 1 with 3-layer GRUs. To update 6,
we replace the sign function with a sharp sigmoid func-
tion during training, and use the indicator function during
validation. The single-rate baseline models cannot handle
multi-rate data directly, and we up-sample all the lower
rate data into higher rate data using linear interpolation.
We use the stats—toolbox (Seabold & Perktold, 2010)
in python for the VAR model implementation. We use
pykalman (Duckworth, 2013) to implement all the KF-
based models. The implementation details of the KF-based
methods are discussed in the supplementary materials. For
LSTM and PLSTM model, we use one layer with 100 neu-
rons to model the time-series, and then apply a soft-max
regressor on top of the last hidden state to do regression.

To ensure a fair comparison, we use roughly the same
amount of parameters for all models. For experiments on
USHCN dataset, train/valid/test sets were split as 70/10/20.
For experiments on MIMIC-III, we used 5-fold cross vali-
dation (train on 3 folds, validate on another fold and test on
the remaining fold) and report the average Mean Squared
Error (MSE) of 5 runs for both forecasting and interpolation
tasks. Note that, we train all the deep learning models with
the Adam optimization method (Kingma & Ba, 2014) and
use validation set to find the best weights, and report the
results on the held-out test set. All the input variables are
normalized to be of 0 mean and 1 standard deviation.

4.3. Quantitative Results

Forecasting Table 2 and 3 respectively show the fore-
casting results on MIMIC-III and USHCN datasets in terms
of MSE. Our proposed MR-HDMM outperforms all the
competing multi-rate latent space models by at least 5%
and beats the single-rate models by at least 15% on both
datasets with all features. Our model also performs the best
on single-rate HSR and MSR forecasting tasks, and per-
forms well on the LSR forecasting task on MIMIC-III and
USHCN datasets.

Table 2. Forecasting results (MSE) on MIMIC-III.

\ All HSR MSR LSR
KF 1.91x10'® 3.34x10'® 8.38x10° 1.22x10°
VAR 1.233 1.735 0.779 0.802
DMM 1.530 1.875 1.064 1.070
HM-RNN 1.388 1.846 0.904 0.713
LSTM 1.512 1.876 1.006 1.036
PLSTM 1.244 1.392 1.030 1.056
MKF 2.05x10 3.58x10'® 3.63x10* 9.54x10?
MR-KF 1.691 2.289 0.944 0.860
MR-DMM 1.061 1.192 0.723 1.065
HDMM 1.047 1.168 0.702 1.076
MR-HDMM | 0.996 1.148 0.678 0.911

Interpolation Table 4 shows the interpolation results on
the two datasets. Since VAR and LSTM cannot be directly
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(a) Hierarchical structure captured in the first 48 hours of an admission in MIMIC-III dataset by switch states of MR-HDMM.
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(b) Hierarchical structure (red & blue blocks) captured along with precipitation time series (green curve) in the one-year
observation in USHCN dataset by switch states of MR-HDMM.

Figure 3. Interpretable latent space learned by MR-HDMM model.

Table 3. Forecasting results (MSE) on USHCN.

| Al HSR MSR LSR
KF 1.236  1.254 1.190 1.148
VAR 2.415 2579 1921 1.748
DMM 0.795 0.608 0.903 0.877
HM-RNN 0.692 0.594 1.151 0.775
LSTM 0.849 0.688 0.934 0.928
PLSTM 0.813 0.710 0.870 0.915
MKF 1.212  1.082 1.727 1.518
MR-KF 0.628 0.542 0.986 0.799
MR-DMM 0.667 0.611 0.847 0.875
HDMM 0.626 0.568 0.815 0.836
MR-HDMM ‘ 0.591 0.541 0.742 0.795

Table 4. Interpolation results (MSE) on MIMIC-III and USHCN.

| MIMIC-III \ USHCN

\ In-sample Out-sample \ In-sample
Simple-Mean 3.812 3.123 0.987
CubicSpline 3.713 3.212x10* 0.947
MICE 3.747 7.580% 102 0.670
MissForest 3.863 3.027 0.941
SoftImpute 3.715 3.086 0.759
DMM 3.714 3.027 0.782
MR-DMM 3.710 3.021 0.696
HDMM 3.790 3.100 0.750
MR-HDMM \ 3.582 2.921 \ 0.626

used for the interpolation task, we focus on evaluating gen-
erative models and imputation methods. From Table 4, we
observe that our proposed model outperforms the baselines
and the competing multi-rate latent space models by a large
margin on all the interpolation tasks on these two datasets.

Table 5. Lower bound of log-likelihood of generative models.
Higher values are better.

DMM MR-DMM HDMM MR-HDMM

MIMIC-III —1.54 2.62 10.54 15.27
USHCN 2.37 14.37 17.25 33.62
Inference = We also compare the lower bound of log-

likelihood of all generative models in Table 5. The higher

lower bound value indicates a better fitted model given the
training data. Our MR-HDMM model achieves the best
performance on both datasets.

4.4. Discussion

In all our experiments, MR-HDMM outperforms other gen-
erative models by a significant margin. Considering that
all the deep generative models have the same amount of
parameters, this improvement empirically demonstrates the
effectiveness of our proposed learnable latent hierarchical
structure and auxiliary connections. In Figure 3(a) and 3(b),
we visualize the latent hierarchical structure of MR-HDMM
learned from the first 48 hours of an admission in MIMIC-
IIT dataset and one-year climate observations in USHCN
dataset. A color block indicates that the latent state 2! is
updated from z._, and zi_l (update), while the white block
indicates z! is generated from the same distribution of 2! _;
(reuse). As expected, the higher latent layers tend to up-
date less frequently and capture the long-term temporal
dependencies. To understand learned hierarchical structure
more intuitively, we also show precipitation time series from
USCHN dataset along with learned switches in Figure 3(b).
We observe that the higher latent layer tends to update along
with the precipitation, which is reasonable since precipita-
tion makes significant changes to the underlying weather
condition which is captured by the higher latent layer.

5. Summary

We proposed the Multi-Rate Hierarchical Deep Markov
Model (MR-HDMM) - a novel deep generative model for
forecasting and interpolation tasks on multi-rate multivariate
time series (MR-MTS) data. MR-HDMM models the data
generation process by learning a latent hierarchical structure
using auxiliary connections and learnable switches to cap-
ture the temporal dependencies. Empirically we showed that
our proposed model outperforms the existing single-rate and
multi-rate models on healthcare and climate datasets.
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