
Deep Learning Solutions to Computational
Phenotyping in Health Care

Zhengping Che
Department of Computer Science
University of Southern California

Los Angeles, CA, USA 90089
zche@usc.edu

Yan Liu
Department of Computer Science
University of Southern California

Los Angeles, CA, USA 90089
yanliu.cs@usc.edu

Abstract—Exponential growth in electronic health record
(EHR) data has resulted in new opportunities and urgent needs
to discover meaningful data-driven representations and patterns
of diseases, i.e., computational phenotyping. Recent success and
development of deep learning provides promising solutions to the
problem of prediction and feature discovery tasks, while lots of
challenges still remain and prevent people from applying stan-
dard deep learning models directly. In this paper, we discussed
three key challenges in this field: how to deal with missing data,
how to build scalable models, and how to get interpretations
of features and models. We proposed novel and effective deep
learning solutions to each of them respectively. All proposed
solutions are evaluated on several real-world health care datasets
and experimental results demonstrated their superiority over
existing baselines.

I. INTRODUCTION

The national push [1] for electronic health records (EHR)
has resulted in an exponential surge in volume, detail, and avai-
lability of digital health data which offers an unprecedented
opportunity to solve many difficult and important problems in
health care. Clinicians are collaborating with computer scien-
tists by using this opportunity to improve the state of health
care services towards the goal of Personalized Healthcare [2].
One important step towards this goal is learning richer, data-
driven descriptions of illness from a variety of data sources
and types. This field of research, known as computational
phenotyping, has attracted many machine learning and data
mining researchers [3]–[5]. However, the recent rise of this
research field with more available data and new applications
has also introduced several challenges which have not been
answered well. Among these challenges, handling missingness
in health care data, building predictive model with scalability,
and interpreting learned features and models are three most
urgent and important ones to be solved.

Properly handling and even effectively exploiting missing-
ness in real-world health care data is very important in health
care domain. Unlike other data sources, medical data such as
EHR often inevitably carry missing observations due to vari-
ous reasons, such as medical events, cost saving, anomalies,
inconvenience. It has been noted that these missing values are
usually informative missingness [6], i.e., the missing values
and patterns provide rich information about target labels in
supervised learning tasks (e.g, time series classification). A

variety of methods have been developed to fill in the missing
values [7]–[9], but they usually result in a two-step process
where imputations are disparate from prediction models and
missing patterns are not effectively explored, thus leading to
suboptimal analyses and predictions [10]. Recent works [11]–
[13] tried to handle missingness in recurrent neural networks
(RNNs) by concatenating missing entries or timestamps with
the input or performing simple imputations. However, there
have not been works which model missing patterns into a
systematically modified RNN structure for time series clas-
sification problems. We develop a novel deep learning model
based on Gated Recurrent Units (GRU) [14], namely GRU-
D, to effectively exploit masking and time interval, which are
two representations of informative missingness patterns [15].
Masking informs the model which inputs are observed (or
missing), while time interval encapsulates the input observa-
tion patterns. Our model captures the observations and their
dependencies by applying masking and time interval (using a
decay term) to the inputs and network states of a GRU cell, and
jointly train all model components using back-propagation.
Thus, our model not only captures the long-term temporal
dependencies of time series observations but also utilizes the
missing patterns to improve the prediction results.

Another major challenge comes from the requirement of
training scalable model which utilize a large and increasing
amount of data. First, the daily increasing volume of health
care data raises the critical problem on finding an efficient
schema to build models with newly coming data. Second and
more important, while plenties of EHR data are available,
only a limited amount of them are for one specific disease
or one single patient. Leveraging the advantages of the big
data for all cases to small data with limited and imbalanced
labels would therefore become quite useful. We propose a
general deep learning framework which has a more efficient
training process and achieves better prediction performance in
this situation [16]. We formulate a prior-based regularization
framework to guide the training of multi-label neural networks
using medical ontologies and other structured knowledge. To
be more specific, graph Laplacian [17] priors are applied on
the prediction layer of the neural networks to incorporate
relational information from domain knowledge or training
data. We also propose an efficient incremental training pro-

cedure for building a series of neural networks that detect
physiologic patterns of increasing length by utilizing existing
neural networks to initialize the a new neural net designed to
detect longer temporal patterns or newly included features.

Furthermore, in health care domain, model and feature
interpretability is not only important but also necessary, since
primary care providers, physicians and clinical experts are
increasingly depending on the new data-driven health care
technologies to help them in patient monitoring and decision-
making. A good interpretable model is shown to result in faster
adoptability among clinical staffs and better quality of patient
care [18], [19]. Even though powerful, deep learning models
(usually with millions of model parameters) are difficult to
interpret. On the other hand, decision trees [20], due to their
easy interpretability, have been quite successfully employed in
health care domain [21], [22], but they can easily overfit and
perform poorly on large heterogeneous EHR datasets. Thus,
an important question naturally arises: how can we develop
novel data-driven solutions which can achieve state-of-the-art
performance as deep learning models and at the same time
can be easily interpreted by health care professionals and
medical practitioners? Inspired by the recently developed mi-
mic learning [23] and knowledge distillation [24] approaches,
we introduce a simple yet effective knowledge-distillation
approach called interpretable mimic learning [25], [26], to
learn interpretable models with robust prediction performance
as deep learning models. Our interpretable mimic learning
framework uses gradient boosting trees (GBT) [27] to learn
interpretable models from deep learning models. Experimental
results demonstrate that our interpretable mimic learning fra-
mework can maintain state-of-the-art prediction performance
of deep models and provide interpretable features and decision
rules.

The rest of this paper is organized as follows: Section II
introduces our GRU-D model for utilizing informative mis-
singness. In section III, we describe our prior-based network
and incremental training strategies to build scalable deep
computational phenotyping models. The interpretable mimic
learning framework is described in section IV. We summarize
our work in section V.

II. GRU-D: MODEL FOR MISSINGNESS IN DATA

A. Methodology

𝑿: Input time series (2 variables);

𝒔: Timestamps for 𝑿;

𝑿 =
47 49 𝑁𝐴 40 𝑁𝐴 43 55
𝑁𝐴 15 14 𝑁𝐴 𝑁𝐴 𝑁𝐴 15

𝒔 = 0 0.1 0.6 1.6 2.2 2.5 3.1

𝑴: Masking for 𝑿;

𝚫: Time interval for 𝑿.

𝑴 =
1 1 0 1 0 1 1
0 1 1 0 0 0 1

𝚫 =
0.0 0.1 0.5 1.5 0.6 0.9 0.6
0.0 0.1 0.5 1.0 1.6 1.9 2.5

Fig. 1. An example of measurement vectors xt, time stamps st, masking
mt, and time interval δt.

1) Notations: We first clarify the notations before introdu-
cing our models. We denote a multivariate time series with
D variables of length T as X = [x1,x2, . . . ,xT] ∈ RD×T .
Let st ∈ R denote the time-stamp when the tth observation

is obtained and we assume that the first observation is made
at time-stamp 0 (i.e., s1 = 0). A time series X could have
missing values. We introduce the masking mt ∈ {0, 1}D to
denote which variables are missing at time step t. The value
of masking is 1 if the variable is observed, otherwise 0. For
each variable d, we also maintain the time interval δdt ∈ R
since its last observation. An example of these notations is
illustrated in Figure 1. In this paper, we are interested in
the time series classification problem, where we predict the
labels ln ∈ {1, . . . , L} given the time series data D, where
D = {(Xn, sn,Mn,∆n)}Nn=1, and Xn =

[
x
(n)
1 , . . . ,x

(n)
Tn

]
,

sn =
[
s
(n)
1 , . . . , s

(n)
Tn

]
, Mn =

[
m

(n)
1 , . . . ,m

(n)
Tn

]
, ∆n =[

δ
(n)
1 , . . . , δ

(n)
Tn

]
.

2) GRU-RNN for time series classification: We investigate
the use of recurrent neural networks (RNN) for time-series
classification, as their recursive formulation allow them to
handle variable-length sequences naturally. We specifically
consider an RNN with gated recurrent units (GRU) [14], [28]
(whose block structure is shown in Figure 2(a)), but similar
discussion and modifications are also valid for other RNN
models such as Long Short-Term Memory (LSTM) [29].

Existing work on handling missing values lead to three
possible solutions with no modification on GRU network
structure. One straightforward approach is simply repla-
cing each missing observation with the mean of the vari-
able across the training examples. In the context of GRU,
we have xdt ← md

tx
d
t + (1 − md

t)x̃
d where x̃d =∑N

n=1

∑Tn

t=1m
d
t,nx

d
t,n

/∑N
n=1

∑Tn

t=1m
d
t,n. We refer to this

approach as GRU-mean. A second approach is to exploit the
temporal structure. For example, we may assume any missing
value is the same as its last measurement and use forward
imputation (GRU-forward), i.e., xdt ← md

tx
d
t + (1 − md

t)x
d
t′

where t′ < t is the last time the d-th variable was obser-
ved. Instead of explicitly imputing missing values, the third
approach simply indicates which variables are missing and
how long they have been missing as a part of input by
concatenating the measurement, masking and time interval
vectors as x(n)

t ←
[
x
(n)
t ;m

(n)
t ; δ

(n)
t

]
where x(n)

t can be the
same as either GRU-mean or GRU-forward. We later refer to
this approach as GRU-simple.

Several recent works [11]–[13], [30] use RNNs on EHR
data to model diseases and predict patient diagnosis from
health care time series data with irregular time stamps or
missing values, but none of them have explicitly attempted
to capture and utilize the missing patterns into their RNNs via
systematically modified network architectures.

3) GRU-D: Model with trainable decays: To fundamentally
address the issue of missing values in time series, we notice
two important properties of the missing values in time series,
especially in health care domains: First, the value of the
missing variable tend to be close to some default value if its
last observation happens a long time ago. This property usually
exists in health care data for human body as homeostasis me-
chanisms and is considered to be critical for disease diagnosis

𝒉 ෩𝒉

𝒛

IN

OUT

𝒙
𝒓

(a) GRU

𝒉 ෩𝒉

𝒛

IN

OUT

𝒙
𝒎𝒓

MASK
𝜸𝒉

𝜸𝒙

(b) GRU-D

Fig. 2. Graphical illustrations of the original GRU (left) and the proposed
GRU-D (right) models. Parts in cyan refer to modifications in GRU-D.

and treatment [31]. Second, the influence of the input variables
will fade away over time if the variable has been missing
for a while. For example, one medical feature in electronic
health records (EHRs) is only significant in a certain temporal
context [32]. Therefore we propose a GRU-based model called
GRU-D, in which a decay mechanism is designed for the input
variables and the hidden states to capture the aforementioned
properties. We introduce decay rates in the model to control
the decay mechanism by considering the following important
factors. First, each input variable in health care time series
has its own medical meaning and importance. The decay rates
should be flexible to differ from variable to variable based
on the underlying properties associated with the variables.
Second, as we see lots of missing patterns are informative
in prediction tasks, the decay rate should be indicative of
such patterns and benefits the prediction tasks. Furthermore,
since the missing patterns are unknown and possibly complex,
we aim at learning decay rates from the training data rather
than fixed a priori. That is, we model a vector of decay rates
γ as γt = exp {−max (0,Wγδt + bγ)} where Wγ and bγ
are model parameters that we train jointly with all the other
parameters of the GRU. We chose the exponentiated negative
rectifier in order to keep each decay rate monotonically
decreasing in a reasonable range between 0 and 1. Note that
other formulations such as a sigmoid function can be used
instead, as long as the resulting decay is monotonic and is in
the same range.

Our proposed GRU-D model incorporates two different
trainable decays to utilize the missingness directly with the
input feature values and implicitly in the RNN states. First,
for a missing variable, we use an input decay γx to decay
it over time toward the empirical mean (which we take as
a default configuration), instead of using the last observation
as it is. Under this assumption, the trainable decay scheme
can be readily applied to the measurement vector by xdt ←
md

tx
d
t+(1−md

t)γx
d
tx

d
t′+(1−md

t)(1−γxd
t)x̃

d where xdt′ is the last
observation of the d-th variable (t′ < t) and x̃d is the empirical
mean of the dth variable. When decaying the input variable
directly, we constrain Wγx to be diagonal, which effectively
makes the decay rate of each variable independent from the
others. Sometimes the input decay may not fully capture the
missing patterns since not all missingness information can
be represented in decayed input values. In order to capture
richer knowledge from missingness, we also have a hidden
state decay γh in GRU-D. Intuitively, this has an effect of

decaying the extracted features (GRU hidden states) rather
than raw input variables directly. This is implemented by
decaying the previous hidden state ht−1 before computing the
new hidden state ht as ht−1 ← γht�ht−1, in which case we
do not constrain Wγh to be diagonal. In addition, we feed the
masking (mt) directly into the model. The update functions
of GRU-D are

rt = σ (Wrxt +Urht−1 + Vrmt + br)

zt = σ (Wzxt +Uzht−1 + Vzmt + bz)

h̃t = tanh (Wxt +U(rt � ht−1) + Vmt + b)

ht = (1− zt)� ht−1 + zt � h̃t

where xt and ht−1 are updated as discussed before, and
Vz,Vr,V are new parameters for masking mt. We also
propose and compare several model variations of GRU-D [15].

B. Experiments

1) Experimental Settings: We demonstrate the performance
of our proposed models on one synthetic and two real-world
health-care datasets and compare it to several strong machine
learning and deep learning approaches in classification tasks.
We evaluate our models for different settings such as early
prediction and different training sizes and investigate the
impact of missing values.

Gesture phase segmentation dataset (Gesture) This UCI
dataset [33] has multivariate time series features, regularly
sampled and with no missing values, for 5 different gesticu-
lations. We extracted 378 time series and generate 4 synthetic
datasets for the purpose of understanding model behaviors
with different missing patterns. We treat it as multi-class
classification task.

PhysioNet Challenge 2012 dataset (PhysioNet) This da-
taset, from PhysioNet Challenge 2012 [34], is a publicly
available collection of multivariate clinical time series from
8000 intensive care unit (ICU) records. Each record is a
multivariate time series of roughly 48 hours and contains 33
variables such as Albumin, heart-rate, glucose etc. We used
Training Set A subset in our experiments since outcomes (such
as in-hospital mortality labels) are publicly available only
for this subset. We conduct mortality prediction task on this
dataset.

MIMIC-III dataset (MIMIC-III) This public dataset [35]
has deidentified clinical care data collected at Beth Israel
Deaconess Medical Center from 2001 to 2012. It contains
over 58,000 hospital admission records. We extracted 99 time
series features from 19714 admission records collected during
2008-2012 by Metavision data management system which
is still employed at the hospital, and only use the first 48
hours data after admission from each time series. We chose
four modalities namely input events (fluids into patient, e.g.
insulin), output events (fluids out of the patient, e.g. urine), lab
events (lab test results, e,g. pH, Platelet count) and prescription
events (drugs prescribed by doctors, e.g. aspirin and potassium
chloride) to collect the patient data recorded in critical care

units and hospital record systems. Mortality prediction task is
conducted on this dataset.

We categorize all evaluated prediction models into three
groups:
• Non-RNN Baselines (Non-RNN): We evaluate logistic

regression (LR), support vector machines (SVM) and
Random Forest (RF) which are widely used in health
care applications.

• RNN Baselines (RNN): We take GRU-mean, GRU-
forward, GRU-simple, and LSTM-mean (LSTM model
with mean-imputation on the missing measurements) as
RNN baselines. As mentioned before, these models are
widely used in existing work [11], [12], [30] on applying
RNN on health care time series data with missing values
or irregular time stamps.

• Proposed Methods (Proposed): This is our proposed
GRU-D model from Section II-A3.

The non-RNN baselines cannot handle missing data directly.
We carefully design experiments for non-RNN models to
capture the informative missingness as much as possible to
have fair comparison with the RNN methods. Since non-
RNN models only work with fixed length inputs, we regularly
sample the time-series data to get a fixed length input and
perform imputation to fill in the missing values. Similar to
RNN baselines, we can concatenate the masking vector along
with the measurements and feed it to non-RNN models. In
order to fairly compare the capacity of all GRU-RNN models,
we build each model in proper size so they share similar
number of parameters. Table I shows the statistics of all GRU-
based models for on three datasets.

TABLE I
SIZE COMPARISON OF GRU MODELS USED IN OUR EXPERIMENTS.

Vars. REFERS TO ALL INPUT FEATURES/VARIABLES IN THAT DATASET.
Size REFERS TO THE NUMBER OF HIDDEN STATES (h) IN GRU.

Pars. REFERS TO ALL PARAMETERS IN THE NEURAL NETWORK MODEL.

GRU-mean
GRU-forward GRU-simple GRU-D

Gesture

of Vars. 18 18 18

Size 64 50 55

of Pars. 16281 16025 16561

MIMIC-III

of Vars. 99 99 99

Size 100 56 67

of Pars. 60105 59533 60436

PhysioNet

of Vars. 33 33 33

Size 64 43 49

of Pars. 18885 18495 18838

2) Quantitative results: To evaluate the impact of modeling
missingness we conduct experiments on the synthetic Gesture
datasets. We process the data in 4 different settings with the
same missing rate but different correlations between missing
rate and the label. A higher correlation implies more informa-
tive missingness. Figure 3 shows the AUC score comparison of

0.6

0.7

0.8

0.9

1

0 0.2 0.5 0.8

GRU-mean GRU-forward

GRU-simple GRU-D

Fig. 3. Classification performance on Gesture synthetic datasets.

three GRU baseline models (GRU-mean, GRU-forward, GRU-
simple) and the proposed GRU-D. Since GRU-mean and GRU-
forward do not utilize any missingness (i.e., masking or time
interval), they perform similarly across all 4 settings. GRU-
simple and GRU-D benefit from utilizing the missingness,
especially when the correlation is high. Our GRU-D achieves
the best performance in all settings, while GRU-simple fails
when the correlation is low. The results on synthetic datasets
demonstrates that our proposed model can model and distin-
guish useful missing patterns in data properly compared with
baselines.

TABLE II
AUC SCORE (mean± std) FOR MORTALITY PREDICTION.

Models MIMIC-III PhysioNet

Non-
RNN

LR-forward 0.7589± 0.015 0.7423± 0.011

SVM-forward 0.7908± 0.006 0.8131± 0.018

RF-forward 0.8293± 0.004 0.8183± 0.015

LR-simple 0.7715± 0.015 0.7625± 0.004

SVM-simple 0.8146± 0.008 0.8277± 0.012

RF-simple 0.8294± 0.007 0.8157± 0.013

RNN

LSTM-mean 0.8142± 0.014 0.8025± 0.013

GRU-mean 0.8192± 0.013 0.8195± 0.004

GRU-forward 0.8252± 0.011 0.8162± 0.014

GRU-simple 0.8380± 0.008 0.8155± 0.004

Proposed GRU-D 0.8527± 0.003 0.8424± 0.012

Next, we evaluate all methods in Section II-B1 on MIMIC-
III and PhysioNet datasets. We noticed that dropout in the
recurrent layer helps a lot for all RNN models on both of the
datasets, probably because they contain more input variables
and training samples than synthetic dataset. Similar to [36], we
apply dropout rate of 0.3 with same dropout samples at each
time step on weights W ,U ,V . Table II shows the prediction
performance of all the models on mortality task. All models
except for random forest improve their performance when they
feed missingness indicators along with inputs. The proposed
GRU-D achieves the best AUC score on both datasets. We use
GRU-simple as a representative for all GRU-simple variant
models [11], [12], [30] since it obtains the best or comparable
performance among them.

III. TRAINING SCALABLE DEEP MODELS

A. Methodology

In this section, we describe our framework for performing
effective deep learning model training with increasing data
and for data with limited and imbalanced labels. We begin
by discussing the Laplacian graph-based prior framework to
effectively train neural networks with smaller data sets and
structured domain knowledge, then describe our incremental
neural network procedure to rapidly train a collection of neural
networks to detect physiologic patterns of increasing length.

Labels

¼7 ¼5

U5 U6 U7

T5 T6 T7 T8

Inputs

�

Respiratory

Pneumonia Infections «

Cardiovascular

 Rheumatic

Fever

Coronary

artery

Disease

«

Fig. 4. Illustrations of regularized deep network and categorical structure.
The regularization is applied to the output layer of the network.

1) Prior-based Regularization: When we have access to
only a few examples of each class label, incorporating prior
knowledge can improve learning the deep neural networks.
Graph Laplacian-based regularization [17], [37] provides one
such framework and is able to incorporate any relational
information that can be represented as a (weighted) graph,
including the tree-based prior as a special case. Given a
matrix A ∈ RK×K representing pairwise connections or
similarities, the Laplacian matrix is defined as L = C −A,
where C is a diagonal matrix with kth diagonal element
Ck,k =

∑K
k′=1(Ak,k′). L has the following property that

makes it interesting for regularization. Given a set of K

vectors vector of parameters βk ∈ RD(L)

and tr(β>Lβ) =
1
2

∑
1≤k,k′≤K Ak,k′‖βk − βk′‖22, where tr(·) represents the

trace operator. According to this equation, the graph Laplacian
regularizer enforces the parameters βk and βk′ to be similar,
proportional to Ak,k′ .

The graph Laplacian regularizer can represent any pairwise
relationships between parameters. We use two different types
of priors to incorporate both structured domain knowledge
(e.g., label hierarchies based on medical ontologies) and em-
pirical similarities. First, the graph Laplacian regularizer can
represent a tree-based prior based on hierarchical relationships
found in medical ontologies. In our experiments, we use
diagnostic codes from the Ninth Revision of the International
Classification of Diseases (ICD-9) system, which are widely
used for classifying diseases and coding hospital data. The
three digits (and two optional decimal digits) in each code
form a natural hierarchy including broad body system cate-
gories (e.g., Respiratory), individual diseases (e.g., Pneumo-
nia), and subtypes (e.g., viral vs. Pneumococcal pneumonia).
Figure 4 illustrates two levels of the hierarchical structure

of the ICD-9 codes. When using ICD-9 codes as labels,
we can treat their ontological structure as prior knowledge.
If two diseases belong to the same category, then we add
an edge between them in the adjacency graph A. Second,
we can also incorporate empirical priors, in the form of
similarity matrices, estimated from data. For example, we can
use the co-occurrence matrix A ∈ RK×K whose elements
are defined as Ak,k′ = 1

N

∑N
i=1 I(yikyik′ = 1) where N is

the total number of the training data points, and I(·) is the
indicator function. Such regularization encourages the learning
algorithm to find similar prediction weights based on the pair-
wise joint probability of the labels.

2) Incremental Training: Next we describe our algorithm
for efficiently training a series of deep models to discover and
detect physiologic patterns of varying lengths. This framework
utilizes a simple and robust strategy for incremental learning
of larger neural networks from smaller ones by iteratively
adding new units to one or more layers, based upon intelligent
initialization of the larger network’s parameters using those of
the smaller network.

Given a multivariate time series X ∈ RP×T , which usually
come with varying or increasing lengths, we propose an incre-
mental training procedure that leverages a neural net trained on
windows of size TS to initialize and accelerate the training of a
new neural net that detects patterns of length T ′ = TS + ∆TS
(i.e., ∆TS additional time steps). Suppose that the existing
and new networks have D(1) and D(1) + d(1) hidden units in
their first hidden layers, respectively, and thus the larger (new)
neural network has a (D(1) + d(1))× (D + d) weight matrix
W ′(1). The first D columns of W ′(1) correspond exactly to
the D columns of W (1) because they take the same D inputs.
We can assume that first D(1) hidden units of h′(1) are highly
similar to h(1) and construct W ′(1) by adding d new columns
and d(1) new rows to W (1). As illustrated in Figure 5, the new
weights can be divided into three categories and be initialized
in different ways.

𝑾 1 𝛥𝑾𝑛𝑒

𝛥𝑾𝑒𝑛 𝛥𝑾𝑛𝑛

𝐷 1

𝑑 1

𝐷 𝑑

x

Δx

𝐷

𝑑

h 1

Δh

𝐷 1

𝑑 1

𝑏 1

𝛥𝑏

𝐷 1

𝑑 1

= +𝜎

Fig. 5. How adding various units changes the weights.

• ∆Wne: connect new inputs to existing features.
• ∆Wen: connect existing inputs to new features.
• ∆Wnn: connect new inputs to new features.
Similarity-based initialization for new inputs To initialize

∆Wne, we leverage the fact that we can compute or estimate
the similarity among inputs. We can estimate the weight
between the ith new input (i.e., input D + i) and the jth
hidden unit as a linear combination of the parameters for the

existing inputs, weighted by each existing input’s similarity
to the ith new input. We find using sample covariance or
cosine similarity to estimate similarity empirically works well
for both time series inputs and arbitrary hidden layers.

Sampling-based initialization for new features When
initializing the weights for Wen, we do not have the similarity
structure, but the weights in W (1) provide information. A
simple but reasonable strategy is to sample random weights
from the empirical distribution of entries in W (1). We found
that estimating all new feature weights from the same simple
distribution (based on W (1)) worked best.

This framework generalizes beyond the input and first
layers. Adding d′ new hidden units to h′(1) is equivalent to
adding d′ new inputs to h′(2). We can still estimate empirical
similarity from training data activations in, e.g., h′(2). As
if our initializations from the previous pretrained values are
sufficiently good, we may be able to forego pretraining. Thus,
we choose to initialize with pretrained weights, then do the
supervised finetuning on all weights.

B. Experiments

To evaluate our framework, we ran a series of classification
and feature-learning experiments using two collections of
clinical time series collected during the delivery of care in
intensive care units (ICUs) at large hospitals.

1) Experimental Settings: We use PhysioNet and PICU
datasets. For PhysioNet dataset, we resample the time series
on an hourly basis and propagate measurements forward (or
backward) in time to fill gaps. We scale each variable to fall
between [0, 1]. For PICU dataset, we exclude episodes shorter
than 12 hours or longer than 128 hours, yielding a data set of
8,500 multivariate time series of a dozen physiologic variables,
which we resample once per hour and scale to [0, 1]. For more
details on the dataset and our preprocessing steps can be found
in [16].

Mortality LOS<3 Surgery Cardiac
0.70

0.75

0.80

0.85

0.90

0.95

1.00

A
U

R
O

C

Physionet episode classification

Indep. baseline

ML baseline

Co-Oc. Prior

(a) Physionet classification performance. (b) Co-occurrence.

Fig. 6. Experiment results on Physionet dataset.

2) Benefits of Prior-based Regularization: Our first set of
experiments demonstrates the utility of using priors to regu-
larize the training of multi-label neural networks, especially
when labels are sparse and highly correlated or similar. From
each time series, we extract all subsequences of length T = 12
in sliding window fashion, with an overlap of 50% (i.e., stride
R = 0.5T), and each subsequence receives its episode’s labels

(e.g., diagnostic code or outcome). We create a small multi-
label classification problem on 27,000 subsequences extracted
from PhysioNet dataset consisting of four binary labels with
strong correlations: in-hospital mortality (mortality), length-
of-stay less than 3 days (los<3), whether the patient had
a cardiac condition (cardiac), and whether the patient was
recovering from surgery (surgery), and take the data-driven
similarity. Figure 6(b) shows the co-occurrence similarity
between the labels. The results for Physionet are shown in
Figure 6(a). We observe two trends, which both suggest that
multi-label neural networks work well and that priors help.
First, jointly learning features, even without regularization, can
provide a significant benefit. Both multi-label neural networks
dramatically improve performance for the surgery and cardiac
tasks, which are strongly correlated and easy to detect because
of our imputation procedure. In addition, the addition of the
co-occurrence prior yields clear improvements in the mortality
and los<3 tasks while maintaining the high performance in the
other two tasks.

3) Efficacy of Incremental Training: In these experiments
we show that our incremental training procedure not only
produces more effective classifiers (by allowing us to combine
features of different lengths) but also speeds up training.
We train a series of neural networks designed to model and
detect patterns of lengths TS = 12, 16, 20, 24. Each neural net
has PTS inputs (for P variables) and five layers of 2PTS
hidden units each. We use each neural network to make an
episode-level prediction as before (i.e., the mean real-valued
output for all frames) and then combine those predictions
to make a single episode level prediction. We compare two
training strategies. Full: separately train each neural net, with
unsupervised pretraining followed by supervised finetuning.
Incremental: fully train the smallest (TS = 12) neural net and
then use its weights to initialize supervised training of the
next model (TS = 16). Repeat for subsequent networks. We
run experiments on a subset of the ICU data set, including
only the 6,200 episodes with at least 24 hours and no more
than 128 hours of measurements. This data set yields 50000,
40000, 30000, and 20000 frames of lengths 12, 16, 20, and
24, respectively. Based on our experimental results shown in
Figure 7, the incremental training method reduces training time
for a single neural net by half. Table III shows the that the
incremental training reaches comparable performance, and the
combination of incremental training and Laplacian prior leads
to better performance than using Laplacian prior only.

IV. INTERPRETABLE MIMIC LEARNING

A. Proposed Methods

1) Mimic Learning: Mimicking the performance of deep
learning models using shallow models is a recent breakthrough
in deep learning which has captured the attention of the
machine learning community. [23] showed empirically that
shallow neural networks are capable of learning the same
function as deep neural networks. They demonstrated this
by first training a state-of-the-art deep model, and then trai-
ning a shallow neural networks to mimic the deep model.

TABLE III
AUROC FOR INCREMENTAL TRAINING.

Size Level Full Inc Prior+Full Prior+Inc

16
Subseq. 0.6928 0.6874 0.6556 0.6581

Episode 0.7148 0.7090 0.6668 0.6744

20
Subseq. 0.6853 0.6593 0.6674 0.6746

Episode 0.7022 0.6720 0.6794 0.6944

24
Subseq. 0.7002 0.6969 0.6946 0.7008

Episode 0.7185 0.7156 0.7136 0.7171

16 20 24
Window Size

0

20

40

60

T
ra

in
in

g
 T

im
e
 (

m
in

)

Full
Inc.

Prior + Full
Prior + Inc.

Fig. 7. Training time comparison of different training strategies.

[24] proposed an efficient knowledge distillation approach
to transfer (dark) knowledge from model ensembles into a
single model. All these previous works motivate us to explore
the possibility of employing the mimic learning strategy to
learn an interpretable model from a well-trained deep neural
network.

2) Proposed Interpretable Mimic Learning Framework:
The basic idea distilling knowledge from deep models [23],
[24] is utilizing soft labels learned from the based model (i.e,
deep neural networks) to train the mimic model (i.e., shallow
neural networks or other simple models). The general training
procedure of the Interpretable Mimic Learning model is shown
in Figure 8.

Deep

Learning

ModelX

y

𝑿𝒏𝒏

𝒚𝒏𝒏
Mimic

Model
X 𝒚𝒎Input

Target

Output

𝒚𝒏𝒏

Fig. 8. Training pipeline for interpretable mimic learning method.

In the first step, we train a deep learning model, which
can be a simple feedforward network or GRU, or a more
powerful multimodal deep learning model, given the input X
and the original target y (which is either 0 or 1 for binary
classification). Then, for each input sample X , we obtain the
soft prediction score ynn ∈ [0, 1] from the prediction layer
of the neural network. In the second step, we train a mimic
Gradient boosting model, given the raw input X and the soft
label y as the model input and target, respectively. We train the
mimic model to minimize the mean squared error of the output
ym to the soft label ynn. After training, the mimic model will
perform similarly as the original deep learning model, but with

its own intrinsic interpretability. Finally, we can directly apply
the mimic model trained in the second step to the original
classification task.

Our interpretable mimic learning model has several ad-
vantages over existing deep learning and gradient boosting
methods. First, the original deep learning model can usually
boost the performance on many tasks over traditional methods,
and gradient boosting methods are good at maintaining the
performance of the original complex model by mimicing its
predictions. Second, the original deep learning model is too
complex to interpret. Our mimic methods, however, provides
better interpretability than original model, by explaining each
feature individually and examining simple rules from the tree
structures. Furthermore, using soft targets from deep learning
models avoids overfitting to the original data and provides
good generalizations, which can not be achieved by standard
decision tree methods or other simple models.

3) Interpretable Model - Gradient Boosting Trees: Gradient
boosting [27] is a method which takes an ensemble of weak
learners to optimize a differentiable loss function by stages.
The basic idea is that the prediction function F (x) can be
approximated by a linear combination of several functions
(under some assumptions), and these functions can be sought
using gradient descent approaches. Gradient Boosting Trees
(GBT) takes a simple classification or regression tree as each
weak learner. At each stage m, assume the current model
is Fm(x), then the Gradient Boosting method tries to find
a weak model hm(x) to fit the gradient of the loss function
with respect to F (x) at Fm(x). The coefficient γm of the
stage function is computed by the line search strategy to
minimize the loss. To keep gradient boosting from overfitting,
a regularization method called shrinkage is usually employed,
which multiplies a small learning rate ν to the stage function
in each stage. The final model with M stages can be written
as FM (x) =

∑M
i=1 νγihi(x) + const.

B. Evaluations of Interpretable Mimic Learning

1) Experimental Settings: We conduct experiments with a
group of our mimic learning models: For each of the deep
models we take its soft prediction scores and apply gradient
boosting methods. These methods are denoted by GBTmimic
with GBT as the mimic (student) model.

We conduct experiments on MIMIC-III and VENT data-
sets. In MIMIC-III dataset, we remove ambiguous and noisy
observations and extract features per 2-hour within first 24
hours after admissions, and perform forward imputation for
lab event variables and zero imputation for other variables
to fill in the missing values. Our main task on the MIMIC-
III dataset is predicting the ICD-9 Diagnosis Code for each
admission record (MIMIC-III-ICD9). For VENT dataset [38],
we perform simple imputation for filling the missing values
where we take the majority value for binary variables, and
empirical mean for other variables. We perform two binary
classification tasks on the VENT dataset:

• Mortality (VENT-MOR): we predict whether the patient
dies within 60 days after admission or not. 20.10% of all
the patients are mortality positive (patients who die).

• Ventilator Free Days (VENT-VFD): in this task, we are
interested in evaluating a surrogate outcome of morbidity
and mortality (Ventilator free Days, of which lower value
is bad), by identifying patients who survive and are on a
ventilator for longer than 14 days. Since here lower VFD
is bad, it is a bad outcome if the value ≤ 14, otherwise
it is a good outcome. 59.05% of all the patients are VFD
positive VFD (patients who survive and stay long enough
on ventilators).

TABLE IV
CLASSIFICATION RESULTS ON VENT DATASET. ONLY THE BEST

PERFORMANCES FOR EACH MODEL TYPE ARE SHOWN.

Models MOR (Mortality) VFD (Ventilator Free Days)

AUROC AUPRC AUROC AUPRC

Non-Deep 0.7196± 0.06 0.4171± 0.10 0.7592± 0.05 0.8142± 0.05

Deep 0.7813± 0.07 0.4874± 0.13 0.7896± 0.05 0.8397± 0.05

Mimic 0.7898± 0.08 0.4766± 0.13 0.7889± 0.05 0.8324± 0.04

0.5

0.6

0.7

0.8

0.9

001
 |

139
#1

140
 |

239
#2

240
 |

279
#3

280
 |

289
#4

290
 |

319
#5

320
 |

389
#6

390
 |

459
#7

460
 |

519
#8

520
 |

579
#9

580
 |

629
#10

630
 |

677
#11

680
 |

709
#12

710
 |

739
#13

740
 |

759
#14

780
 |

789
#15

790
 |

796
#16

797
 |

799
#17

800
 |

999
#18

V
Codes

#19

E
Codes

#20

Best Non-deep Model

Best Deep Model

Best Mimic Model

Fig. 9. Classification results (AUROC) on MIMIC-III dataset. x-axis: ICD-9
tasks; y-axis: AUROC.

2) Performance of Mimic Learning Models: Table IV
shows the prediction performance of different methods on
the predictive tasks of the VENT dataset, and the detailed
results can be found in our paper [26]. Our interpretable mimic
methods obtain similar or even slightly better performance
compared with deep models. Figure 9 shows the prediction
performance of different methods for all 20 ICD-9 diagnosis
tasks on the MIMIC-III dataset. For the simple baselines used
in these tasks (LR and SVM), we also include the statistics
for each time series variable (average, min, and max) as
the features, which is recognized as one of the state-of-art
methods in ICU data analysis. Again, our proposed mimic
models clearly outperform the baselines and achieve similar
performance of multimodal models on most of the tasks.

3) Interpretations: Since our mimic models come from
additive and tree-based Gradient Boosting methods, there are
several tools for interpreting the models. Among them, the
feature importance measurement, partial dependence plots and
the important decision rules are commonly used in practice.
We will discuss these interpretation approaches and provide
some case studies.

a) Feature Influence: One of the most common inter-
pretation tools for tree-based algorithms is the feature im-

portance (influence of variable) [27]. The influence of one
variable j in a single tree T with L splits is based on
the numbers of times when the variable is selected to split
the data samples. Formally, the influence Inf is defined
as Infj(T) =

∑L−1
l=1 I2l I(Sl = j) where I2l refers to the

empirical squared improvement after the split l, and I is the
identity function. The importance scores of the entire GBT
is defined as the average influence across all the trees, and
are normalized across all the variables. Although importance
scores does not tell anything about how the feature is actually
used in the model, it is a quite useful metric for feature
selection.

Analysis on VENT dataset Table V shows the most
useful features for MOR and VFD tasks on VENT dataset,
respectively, from both GBT and GBTmimic models. We find
that some important features are shared with several methods
in these two tasks, e.g., MAP (Mean Airway Pressure) at day
1, δPF (Change of PaO2/FIO2 Ratio) at day 1, etc. Besides,
almost all the top features are temporal features, while among
all static features, the PRISM (Pediatric Risk of Mortality)
score, which is developed and commonly used by the doctors
and medical experts, is the most useful static variable.

TABLE V
TOP FEATURES AND THEIR CORRESPONDING IMPORTANCE SCORES ON

VENT DATASET.

Task MOR (Mortality) VFD (Ventilator Free Days)

Model GBT GBTmimic GBT GBTmimic

Features

PaO2-Day2 BE-Day0 MAP-Day1 MAP-Day1
(0.0539) (0.0433) (0.0423) (0.0384)

MAP-Day1 δPF-Day1 PH-Day3 PIM2S
(0.0510) (0.0431) (0.0354) (0.0322)

BE-Day1 PH-Day1 MAP-Day2 VE-Day0
(0.0349) (0.0386) (0.0297) (0.0309)

FiO2-Day3 PF-Day0 MAP-Day3 VI-Day0
(0.0341) (0.0322) (0.0293) (0.0288)

PF-Day0 MAP-Day1 PRISM12 PaO2-Day0
(0.0324) (0.0309) (0.0290) (0.0275)

b) Partial Dependence Plots: Visualizations provide bet-
ter understanding and comparison of complex mimic models.
In GBT, we can get visualizations by plotting the partial
dependence of a specific variable or a subset of variables. The
partial dependence can be treated as the approximation of the
prediction function given only the specific variable(s). It can be
computed by getting the prediction values with marginalizing
over the values of all other variables.

One-way partial dependence and additive function Based
on the feature list shown in Table V, we are more interested
in finding how the important features exactly influence the
model predictions. Furthermore, by investigating the influence
of the same variable in different models, people can easily
check and compare different mimic models. Figure 10 shows
the one-way partial dependence from GBTmimic models for
mortality task on VENT dataset, and both these two methods

20 0 20
BE-D0

0.02

0.00

0.02

0.04

0.06

0.08

500 200 100
DeltaPF-D1

0.02

0.00

0.02

0.04

0.06

7.100 7.325 7.550
PH-D1

0.02

0.00

0.02

0.04

0.06

0.08

Fig. 10. One-way partial dependence and function plots of top three important
features in GBTmimic models for VENT-MOR task. From left to right in
each row: BE-Day0, δPF-Day1, PH-Day1. x-axis: variable value; y-axis:
dependence/function value.

mimic the same HMMDL model. First, we can see that while
the two mimic methods are different, what they have learned
from the base model are surprisingly similar. This stable result
by different mimic learning models also verifies that the mimic
models are rather robust and effective in distilling the useful
knowledge from the base model. Second, the results are easy
to interpret and match existing findings. For instance, both of
our mimic models predict a higher chance of mortality when
the patient has value of PH-Day0 below 7.325. That conforms
to the clinical knowledge that human blood stays in a very
narrow pH range around 7.35 - 7.45. If the pH value of blood
decreases from 7.45 to 7.30, the blood will loss 64.9% oxygen,
which leads to severe symptoms and disease. More useful
rules from our mimic models can be found via the partial
dependence plots, which demonstrate an insightful approach
to understand and utilize the more powerful yet complex deep
models through mimic learning.

400 300 200 100 0
DeltaPF-D1

15

10

5

0

5

10

15

B
E
-D

0

-0.01

0.01

0.04

0.06
0.09

0.11

7.20 7.28 7.36 7.44 7.52
PH-D1

15

10

5

0

5

10

15

B
E
-D

0

-0.02

0.010.03

0.06

0.09

0
.1

2

7.20 7.28 7.36 7.44 7.52
PH-D1

400

300

200

100

0

D
e
lt

a
P
F-

D
1

-0.01

0.02

0
.0

4

0
.0

6

0.09

0
.1

1

Fig. 11. Pairwise partial dependence plots for top important features of
GBTmimic model on VENT-MOR task. Red: Positive dependence; Blue:
Negative dependence.

Two-way partial dependence It would be more helpful
to investigate these interactions among the most important
features. One possible way is to generate 2-dimensional partial
dependence for two important features. Figure 11 demonstrates
the 2-way dependence scores of the top three features used
in our GBTmimic model. One can see that these plots are
consistent with the corresponding one way plots, and the
interactions between the two features can be exposed by the
former figures. These plots can also be examined domain
experts to obtain a better understanding of the model and to
identify unknown interactions between the features.

c) Top Decision Rules: Another way to evaluate our
mimic methods is to compare and interpret the trees obtained
from our models. Figure 12 shows the examples of the most
important trees built by our interpretable mimic learning
methods for MOR and VFD tasks on VENT dataset and the
ICD-9 diagnosis prediction task on MIMIC-III dataset. We
choose the tree with the highest coefficient weight in the
final prediction function as the most important tree. Some

LIS-D0 <= 2.8333
S = 100.0%

OI-D1 <= 10.5673
S = 67.6%

True

BE-D0 <= 0.95
S = 32.4%

False

PCO2-D1 <= 53.2545
S = 62.6%

MAP-D1 <= 18.2083
S = 5.0%

% = 0.083
S = 58.2%

V = -0.1334

% = 0.294
S = 4.4%

V = 0.0897

% = 0.333
S = 2.8%

V = 0.0823

% = 0.625
S = 2.2%

V = 0.4669

PIP-D3 <= 25.9108
S = 22.6%

PH-D3 <= 7.3631
S = 9.7%

% = 0.091
S = 2.5%

V = -0.0133

% = 0.474
S = 20.1%
V = 0.3223

% = 0.375
S = 1.9%

V = 0.2112

% = 0.152
S = 7.9%

V = -0.095

(a) VENT-MOR
OI-D1 <= 10.927

S = 100.0%

LIS-D0 <= 2.8333
S = 82.4%

True

DeltaPF-D2 <= -89.042
S = 17.6%

False

BE-D1 <= -5.9335
S = 64.8%

MAP-D1 <= 13.6886
S = 17.6%

% = 0.400
S = 6.0%

V = -0.1921

% = 0.762
S = 58.8%
V = 0.204

% = 0.846
S = 3.5%

V = 0.2104

% = 0.393
S = 14.2%

V = -0.3013

PaO2-D0 <= 50.5
S = 4.4%

LeakPer <= 0.1669
S = 13.2%

% = 0.125
S = 2.5%

V = -0.3634

% = 0.583
S = 1.9%

V = -0.0715

% = 0.200
S = 12.6%

V = -0.4922

% = 0.000
S = 0.6%

V = -0.1118

(b) VENT-VFD
HEMATOCRIT-T8 <= 33.55

S = 100.0%

RDW-T10 <= 14.95
S = 46.3%

True

CREATININE-T1 <= 1.375
S = 53.7%

False

CREATININE-T10 <= 1.45
S = 19.7%

PLATELET COUNT-T12 <= 153.25
S = 26.7%

% = 0.449
S = 15.7%

V = -0.0055

% = 0.642
S = 4.0%

V = 0.1877

% = 0.814
S = 8.7%

V = 0.3173

% = 0.633
S = 18.0%
V = 0.1587

RDW-T10 <= 15.65
S = 41.3%

CREATININE-T2 <= 2.15
S = 12.3%

% = 0.235
S = 35.8%

V = -0.1788

% = 0.396
S = 5.5%

V = -0.0212

% = 0.401
S = 8.0%

V = -0.0313

% = 0.469
S = 4.3%

V = 0.1136

(c) MIMIC-III ICD-9 Category #4
UREA NITROGEN-T5 <= 26.25

S = 100.0%

CREATININE-T2 <= 1.15
S = 66.8%

True

CREATININE-T6 <= 1.45
S = 33.2%

False

RDW-T2 <= 14.475
S = 53.9%

CREATININE-T7 <= 1.75
S = 12.8%

% = 0.211
S = 34.3%

V = -0.2654

% = 0.312
S = 19.7%
V = -0.1127

% = 0.587
S = 11.0%

V = -0.0191

% = 0.945
S = 1.9%

V = 0.3424

UREA NITROGEN-T12 <= 35.5
S = 12.5%

UREA NITROGEN-T3 <= 44.5
S = 20.7%

% = 0.556
S = 8.3%

V = 0.0897

% = 0.682
S = 4.2%
V = 0.285

% = 0.910
S = 8.5%

V = 0.3528

% = 0.978
S = 12.2%
V = 0.4868

(d) MIMIC-III ICD-9 Category #10

Fig. 12. Sample decision trees from best GBTmimic models. %: Class
distribution for samples belong to that node; S: # of Samples to that node;
V: Prediction value of that node; Darker leaf node has more samples with
positive labels.

observations from this figure are as follows: ICD-9 codes
for task 10 (ICD-9 Code range 580-629) correspond to the
diseases of Genitourinary System, and the top features found
in our trees are Urea Nitrogen and Creatinine which are
present in the lab tests performed on urine and blood collected
from the patients. It is known that blood urea-nitrogen(BUN)-
to-creatinine ratio generally provides a precise information
about kidney function and may be used to determine the cause
of acute kidney injury or dehydration [39]. Similarly, features
in the top tree of task 4 are Hematocrit, RDW, Creatinine
and plate count; and their analysis reveals that these are quite
useful for the ICD-9 task 4 prediction task which corresponds
to the diseases of blood.

V. SUMMARY

In this paper, we provide efficient and effective deep le-
arning solutions for three key challenges in computational
phenotyping research in health care. For the challenge from
missing data, we designed GRU-D, a variation of GRU model,

to utilize informative missingness. We propose prior-based
regularization framework for health care data with imbalan-
ced and sparse labels, and incremental training strategy to
efficiently handle more input data. Furthermore, we propose a
simple and effective interpretable mimic learning framework,
which has both superior performance and good interpretability.
All the proposed methods are shown to outperform existing
baselines on real-world health care datasets.

REFERENCES

[1] G. Hripcsak and D. J. Albers, “Next-generation phenotyping of elec-
tronic health records,” Journal of the American Medical Informatics
Association, vol. 20, no. 1, pp. 117–121, 2013.

[2] N. V. Chawla and D. A. Davis, “Bringing big data to personalized
healthcare: a patient-centered framework,” Journal of general internal
medicine, vol. 28, no. 3, pp. 660–665, 2013.

[3] J. Zhou, F. Wang, J. Hu, and J. Ye, “From micro to macro: Data driven
phenotyping by densification of longitudinal electronic medical records,”
in KDD, 2014.

[4] J. C. Ho, J. Ghosh, and J. Sun, “Marble: high-throughput phenotyping
from electronic health records via sparse nonnegative tensor factoriza-
tion,” in KDD, 2014.

[5] R. L. Richesson, J. Sun, J. Pathak, A. N. Kho, and J. C. Denny, “Clinical
phenotyping in selected national networks: Demonstrating the need
for high-throughput, portable, and computational methods,” Artificial
intelligence in medicine, vol. 71, pp. 57–61, 2016.

[6] D. B. Rubin, “Inference and missing data,” Biometrika, vol. 63, no. 3,
pp. 581–592, 1976.

[7] D. M. Kreindler and C. J. Lumsden, “The effects of the irregular sample
and missing data in time series analysis,” Nonlinear Dynamical Systems
Analysis for the Behavioral Sciences Using Real Data, p. 135, 2012.

[8] P. J. Garcı́a-Laencina, J.-L. Sancho-Gómez, and A. R. Figueiras-Vidal,
“Pattern classification with missing data: a review,” Neural Computing
and Applications, vol. 19, no. 2, pp. 263–282, 2010.

[9] K. Rehfeld, N. Marwan, J. Heitzig, and J. Kurths, “Comparison of
correlation analysis techniques for irregularly sampled time series,”
Nonlinear Processes in Geophysics, vol. 18, no. 3, pp. 389–404, 2011.

[10] B. J. Wells, K. M. Chagin, A. S. Nowacki, and M. W. Kattan, “Strategies
for handling missing data in electronic health record derived data,”
EGEMS, vol. 1, no. 3, 2013.

[11] Z. C. Lipton, D. C. Kale, and R. Wetzel, “Modeling missing data in
clinical time series with rnns,” Machine Learning for Healthcare, 2016.

[12] E. Choi, M. T. Bahadori, and J. Sun, “Doctor ai: Predicting clinical
events via recurrent neural networks,” arXiv preprint arXiv:1511.05942,
2015.

[13] I. M. Baytas, C. Xiao, X. Zhang, F. Wang, A. K. Jain, and J. Zhou,
“Patient subtyping via time-aware lstm networks,” in KDD. ACM,
2017.

[14] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of
gated recurrent neural networks on sequence modeling,” arXiv preprint
arXiv:1412.3555, 2014.

[15] Z. Che, S. Purushotham, K. Cho, D. Sontag, and Y. Liu, “Recurrent
neural networks for multivariate time series with missing values,” arXiv
preprint arXiv:1606.01865, 2016.

[16] Z. Che, D. Kale, W. Li, M. T. Bahadori, and Y. Liu, “Deep computational
phenotyping,” in Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. ACM, 2015,
pp. 507–516.

[17] K. Q. Weinberger, F. Sha, Q. Zhu, and L. K. Saul, “Graph laplacian
regularization for large-scale semidefinite programming,” in NIPS, 2006.

[18] M. Peleg, S. Tu, J. Bury, P. Ciccarese, J. Fox, R. A. Greenes, R. Hall,
P. D. Johnson, N. Jones, A. Kumar et al., “Comparing computer-
interpretable guideline models: a case-study approach,” Journal of the
American Medical Informatics Association, vol. 10, no. 1, pp. 52–68,
2003.

[19] K. F. Kerr, A. Bansal, and M. S. Pepe, “Further insight into the
incremental value of new markers: the interpretation of performance
measures and the importance of clinical context,” American journal of
epidemiology, p. kws210, 2012.

[20] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1,
no. 1, pp. 81–106, 1986.

[21] G. Bonner, “Decision making for health care professionals: use of
decision trees within the community mental health setting,” Journal of
Advanced Nursing, vol. 35, no. 3, pp. 349–356, 2001.

[22] Z. Yao, P. Liu, L. Lei, and J. Yin, “R-c4. 5 decision tree model and its
applications to health care dataset,” in Services Systems and Services
Management, 2005. Proceedings of ICSSSM’05. 2005 International
Conference on, vol. 2. IEEE, 2005, pp. 1099–1103.

[23] J. Ba and R. Caruana, “Do deep nets really need to be deep?” in
Advances in Neural Information Processing Systems, 2014, pp. 2654–
2662.

[24] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[25] Z. Che, S. Purushotham, R. Khemani, and Y. Liu, “Distilling knowledge
from deep networks with applications to healthcare domain,” arXiv
preprint arXiv:1512.03542, 2015.

[26] ——, “Interpretable deep models for icu outcome prediction,” in AMIA
Annual Symposium Proceedings, vol. 2016. American Medical Infor-
matics Association, 2016, p. 371.

[27] J. H. Friedman, “Greedy function approximation: a gradient boosting
machine,” Annals of statistics, pp. 1189–1232, 2001.

[28] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning phrase representations using
rnn encoder-decoder for statistical machine translation,” arXiv preprint
arXiv:1406.1078, 2014.

[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[30] T. Pham, T. Tran, D. Phung, and S. Venkatesh, “Deepcare: A deep dyna-
mic memory model for predictive medicine,” in Pacific-Asia Conference
on Knowledge Discovery and Data Mining. Springer, 2016, pp. 30–41.

[31] Y. Vodovotz, G. An, and I. P. Androulakis, “A systems engineering
perspective on homeostasis and disease,” Frontiers in bioengineering
and biotechnology, vol. 1, 2013.

[32] L. Zhou and G. Hripcsak, “Temporal reasoning with medical dataa
review with emphasis on medical natural language processing,” Journal
of biomedical informatics, vol. 40, no. 2, pp. 183–202, 2007.

[33] R. C. Madeo, C. A. Lima, and S. M. Peres, “Gesture unit segmentation
using support vector machines: segmenting gestures from rest positions,”
in SAC, 2013.

[34] I. Silva, G. Moody, D. J. Scott, L. A. Celi, and R. G. Mark, “Predicting
in-hospital mortality of icu patients: The physionet/computing in cardi-
ology challenge 2012,” in CinC, 2012.

[35] A. Johnson, T. Pollard, L. Shen, L. Lehman, M. Feng, M. Ghassemi,
B. Moody, P. Szolovits, L. Celi, and R. Mark, “Mimic-iii, a freely
accessible critical care database,” Scientific Data, 2016.

[36] Y. Gal, “A theoretically grounded application of dropout in recurrent
neural networks,” arXiv preprint arXiv:1512.05287, 2015.

[37] T. Zhang, A. Popescul, and B. Dom, “Linear prediction models with
graph regularization for web-page categorization,” in KDD, 2006.

[38] R. G. Khemani, D. Conti, T. A. Alonzo, R. D. Bart, and C. J. Newth,
“Effect of tidal volume in children with acute hypoxemic respiratory
failure,” Intensive care medicine, vol. 35, no. 8, pp. 1428–1437, 2009.

[39] S. Uchino, R. Bellomo, and D. Goldsmith, “The meaning of the blood
urea nitrogen/creatinine ratio in acute kidney injury,” Clinical kidney
journal, vol. 5, no. 2, pp. 187–191, 2012.

