
An Examination of Multivariate Time Series
Hashing with Applications to Health Care

David C. Kale,∗† Dian Gong,∗ Zhengping Che,∗

Yan Liu, Gerard Medioni
Computer Science Department

University of Southern California
Los Angeles, CA 90089

{dkale,diangong,zche}@usc.edu
{yanliu.cs,medioni}@usc.edu

Randall Wetzel, Patrick Ross
Laura P. and Leland K. Whittier Virtual Pediatric Intensive Care Unit

Children’s Hospital Los Angeles
Los Angeles, CA 90027

{rwetzel,pross}@chla.usc.edu

Abstract—As large-scale multivariate time series data become
increasingly common in application domains, such as health care
and traffic analysis, researchers are challenged to build efficient
tools to analyze it and provide useful insights. Similarity search,
as a basic operator for many machine learning and data mining
algorithms, has been extensively studied before, leading to several
efficient solutions. However, similarity search for multivariate
time series data is intrinsically challenging because (1) there is
no conclusive agreement on what is a good similarity metric for
multivariate time series data and (2) calculating similarity scores
between two time series is often computationally expensive. In
this paper, we address this problem by applying a generalized
hashing framework, namely kernelized locality sensitive hashing,
to accelerate time series similarity search with a series of
representative similarity metrics. Experiment results on three
large-scale clinical data sets demonstrate the effectiveness of the
proposed approach.

I. INTRODUCTION

Multivariate time series data are becoming ubiquitous and
big. Nowhere is this trend more obvious than in health care,
with the growing adoption of electronic health records (EHRs)
systems. According to a 2009 survey, hospital intensive care
units (ICUs) in the United States (US) treated nearly 55,000
patients per day,1 generating digital health databases con-
taining millions of individual measurements, many of which
constitute multivariate time series. Clinicians naturally want
to utilize these data in new and innovative ways to aid in
the diagnosis and treatment of new patients. An increasingly
popular idea is to search these databases to find “patients like
mine,” i.e., past cases that are similar to the present one [1].

This classic data mining task, known as similarity search,
must be both accurate and fast, which depends crucially
on two choices: representation and similarity measure. For
traditional data types (e.g., structured data, free text, images,
etc.), the standard approach is to define a set of features
that we extract from each object in our database and then
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apply straightforward measures of similarity (e.g., Euclidean
distance) to these. This has been applied to time series data
[2], but designing good features can be difficult and time-
consuming.

Researchers have shown empirically that the best represen-
tation for time series is often the data themselves, combined
with specialized similarity measures [3]. The classic example
is dynamic time warping (DTW), an extension of Euclidean
distance that permits nonlinear warping along the temporal
axis in order to find the optimal alignment between two time
series [4]. The choice in time series similarity measures ranges
from simple to complex approaches based on fitting parametric
models [5]. Indeed, there has been an explosion in the number
and variety of time series similarity and distance metrics
proposed in the literature over the last decade [6] [7] [8] [9].

There are two critical things to observe about these com-
peting similarity metrics, especially if we want to use them to
implement fast similarity search for multivariate time series:
that different similarities work best for different data and
problems; and that the most effective similarity measures are
often computationally expensive and ill-suited to large scale
search. The first point was best demonstrated by the thorough
empirical evaluation in [9], in which no one metric worked best
for all data and problems. Choosing the right similarity (much
like designing good features) requires experience, intuition,
and experimentation. The second point is more nuanced; some
approaches can often be sped up by using a combination of
good engineering and heuristics (e.g., DTW [10]). However,
these speed-ups do not generalize beyond specific tasks or to
other measures that we may want to use.

In this paper, we investigate a general solution that applies
to a large class of time series similarities: kernelized hashing.
Hashing has been used to build fast search and retrieval over
massive databases of text and images [11] [12] [13]. It utilizes
one or more hash functions to map the input data to a fixed-
length representation (typically a binary code), which then can
be used as indexes in a large-scale storage architecture. Well-
constructed hash functions will assign similar codes to similar
objects, allowing us to store them together and to find them
with just a quick lookup.



We apply kernelized locality-sensitive hashing (KLSH) [14]
to the problem of fast search over multivariate time series.
KLSH kernelizes the LSH search framework so that it can
be used with arbitrary time series similarity metrics. In this
paper we combine it with a modified Euclidean distance, mul-
tivariate dynamic time warping [10], global alignment kernels
[15], and vector autoregressive kernels [8]. We show that it
provides significant speed-ups versus exhaustive search across
all similarity metrics without significantly compromising the
quality of the search results.

We present empirical results that back up our argument,
using data sets that include two large, anonymized databases
of medical time series from Children’s Hospital Los Angeles
(CHLA): the 10,000 patient PICU data set [5] and a collection
of vital signs time series from over 60,000 surgeries. We
find, first of all, that our intuition is confirmed: there is no
single best similarity measure across all data sets. Second,
we show that KLSH speeds up similarity search for all
similarity metrics with an acceptable impact on search result
quality. Thus, kernelized hashing provides a much more robust
and flexible approach to speeding up large scale time series
similarity search than attempting to optimize any one distance
measure. We believe that this work is but a first step toward
a comprehensive approach to fast similarity search for time
series (and other structured objects) and that it opens the door
to innovative work on time series hashing.

II. BACKGROUD

A. Notation
We define a univariate time series of length T as a set of T

samples from a random process parameterized by time (and
indexed by t): x = {x(1) . . . x(t) . . . x(T )}. In this paper,
we assume that time is discrete and that measurements are
regularly sampled with no missing values. We will denote a
single univariate time series as x ∈ RT . A multivariate time
series (MVT) is a set of P time series (one per each of P
variables) sampled at the same time intervals:

X =



x1(1)
x2(1)

...
xP (1)

 . . .

x1(t)
x2(t)

...
xP (t)

 . . .

x1(T )
x2(T )

...
xP (T )




We can represent a MVT as a P -by-T matrix: X ∈ RP×T ,
where the ith row is the ith univariate time series xi ∈
RT and column t is a P -vector of observations at time t:
x(t) ∈ RP . We refer to the dimensionality of this MVT
as P and consistently use a subscript plus lowercase bold
(xi) to indicate the ith dimensional time series in a single
MVT X . Throughout this paper, we will often refer to P -
dimension MVTs simply as “time series” when our meaning
is clear from context. Suppose now that we have a database
(which we will refer to as D) of P -dimension MVTs, N in
total: D = {Xj : Xj ∈ RP×Tj}Nj=1. We will consistently
use a subscript plus uppercase bold (Xj) to index MVTs in
a database. All of the time series in our database are of the
same dimension P but may vary in length.

B. Problem Definition

We are interested in the multivariate time series similarity
search problem: given a query time series Xq ∈ RP×Tq ,
we are interested in finding the time series X∗ ∈ D that is
most similar to Xq , given an arbitrary definition of similarity
between MVTs S(X,Xq):

X∗ = argmax
X∈D

S(Xq,X)

i.e., the time series X∗ ∈ D that maximizes S(Xq, ·).
Alternatively, if we are given a distance measure D instead
of similarity, we seek to minimize D(Xq, ·). More generally
we are interested in the k nearest neighbors (knn) problem:
finding the K most similar time series to Xq . Furthermore, we
are interested in performing this search as quickly as possible.

C. Related Work

Fast search in a database of variable length MVTs presents
two interrelated challenges that thwart most standard ap-
proaches:

1) Designing a time series similarity (or distance) measure
that is both effective and fast can be difficult.

2) Many traditional approximate search methods cannot
easily be applied to variable length MVTs.

Computing the similarity between variable length time
series can be quite computationally expensive and so an
approach based on an exhaustive search (i.e., linear scan)
of the database will not scale to really large data sets (i.e.,
some combination of large P , large T , and large N ). This
problem is not unique to variable length time series. In
computer vision, for example, researchers have found that
the best representations for images tend to be extremely high
dimensional feature vectors, which can be expensive in terms
of both memory and computation [12]. With such data, linear
scan searches using Euclidean distance become prohibitively
slow, necessitating the development of alternative approaches.

One possible solution is to use a fast approximate search
for nearest neighbors, perhaps using an alternative time series
representation. A framework that has enjoyed widespread
success and popularity is symbolic approximate aggregation
(SAX), which discretizes the continuous observation space
and replaces real values with symbols [6]. By converting
the data to a discrete representation, we gain access to fast
algorithms for mining sequences of symbols (e.g., longest
common subsequence). Subsequent work has shown that SAX
does a good job of approximating the true similarity between
short time series and can be used to perform scalable indexing
of large time series databases [16]. How to apply SAX to
multivariate time series remains an open research question.

Another alternative representation that enables both efficient
storage and fast search is binary codes, such as those produced
by hashing. Locality sensitive hashing (LSH) is one of the
most widely used approaches to constructing fixed length
binary representations of data for fast approximate nearest
neighbor search; it is based on the intuition that the probability
that two objects share the same code should be proportional to



their similarity [11]. LSH has received numerous extensions,
including the incorporation of supervision through the use of
metric learning [17]. There is also a wide variety of alternative
methods for learning binary embeddings of data which can
then be used for hashing and fast comparison. These include
semantic hashing [18]; spectral hashing [19]; shift-invariant
kernel hashing [20]; directly learning a hamming distance
metric [21]; etc. All of these approaches share a common
limitation: they require fixed size data representations, which
prohibits their direct application to time series data.

Two major advances in the last five years should enable us to
perform fast approximate nearest neighbor search over MVTs
via hashing. The first is kernelized locality sensitive hashing
(KLSH) [14]. KLSH permits the hashing of objects for which
similarity is defined using arbitrary kernel functions. The
second major advance has been a large number of proposed
time series similarity and distance measures. Many of these
can naturally be formulated into valid kernels and used within
the KLSH framework, allowing us to combine the power of
these similarity measures with the speed of hashing based
search.

III. KERNELIZED HASHING OF TIME SERIES

We begin with a thorough review of kernel-based hashing
and of similarity kernels for time series. We then describe
briefly how to put these together into a unified kernelized time
series hashing framework. We then rapidly move on to our
empirical investigation of the efficacy of this approach.

A. Kernelized locality sensitive hashing

Locality sensitive hashing (LSH) enables fast similarity
search by generating bit vector representations of objects,
which can be compared very rapidly on modern hardware
[11]. Given an object X , we can generate a B-bit hash
code for the object using a collection of B hash functions
{h1, . . . , hB}. For each hash function, the probability that
two objects receive the same bit (1 or 0) is proportional to
their similarity: P{hi(X) = hi(X

′)} ∝ S(X,X ′) for all
i = 1, . . . , B. A common way to achieve this is by defining
hi(X) = 1 if a>X ≥ 0 and 0 otherwise, where a is a random
hyperplane sampled from a zero mean, unit variance Gaussian:
a ∼ N (0, I) [22]. Standard LSH assumes fixed size feature
vectors and uses cosine similarity. It cannot be used directly
with more specialized notions of similarity or objects with
variable sizes or special structure (e.g., time series).

Kernel methods allow us to apply machine learning to
problems where the data does not live in a fixed dimensional
space or where we want to use similarity measures that
incorporate specialized information or structure. Assume we
have a positive definite kernel function κ that produces a
cosine-like similarity between X and X ′: κ(X,X ′). Here
κ induces a feature space φ for which we cannot directly
examine φ(X) or calculate, for example, a Euclidean dis-
tance between two examples (‖φ(X) − φ(X ′)‖2). On the
other hand, we can compute their similarity using κ since
κ(X,X ′) = φ(X)>φ(X ′).

We can use this kernel function to perform kernelized LSH
in much the same way that we use kernel methods for support
vector machines [14]. We compute the random hyperplane a
as a weighted sum over M � N training examples in the
kernel-induced feature space: a =

∑M
j=1wjφ(Xj). Again,

we cannot explicitly compute this, but we observe that we
can evaluate a>φ(X ′) for some new example φ(X ′):

a>φ(X ′) =

 M∑
j=1

wjφ(Xj)

φ(X ′)

=

M∑
j=1

wjφ(Xj)φ(X ′)

=

M∑
j=1

wjκ(Xj ,X
′)

and so our KLSH hashing function becomes

ha(X ′) =

{
1 if sign

(∑M
j=1wjκ(Xj ,X

′)
)
≥ 0

0 otherwise

Two questions remain: how big should M be (and how do we
choose our M points?); and how do we choose our weights
wj such that a is a “valid” hyperplane for performing LSH
(i.e., is a ∼ N (0, I))? Clearly if M is very large (i.e.,
M ≈ N ), then evaluating hash function becomes almost
as expensive as performing a linear scan using our kernel-
based similarity. Thus, we want M � N . [14] suggests
sampling M = O(

√
N) points at random, which guarantees

sublinear runtime and usually produces good accuracy. For the
second question, we choose w = K−1/2eR. K ∈ RM×M
is our similarity kernel matrix over our M samples (i.e.,
Kjl = κ(Xj ,Xl)). eR ∈ {0, 1}M is an indicator vector
with only R < M nonzero entries, corresponding to a subset
of R points chosen at random from the M points included
in K. [14] gives a derivation showing that, by the central
limit theorem, a will be approximately distributed according
to N (0, IP ).

The main computational expense of KLSH is the initial
training, which requires computing and the inverting the M -
by-M kernel matrix K (an O(M3) operation) to find w.
Searching for the nearest neighbors of a new query Xq is
very fast. First, we evaluate our kernel function O(BM) times
to compute B bits. By choosing M � N , we ensure that
this is much faster than performing an exhaustive search,
which requires O(N) kernel evaluations. In the second step,
we search over binary hash codes to find nearest neighbors,
which is trivially fast, even in large data sets. Finally, we can
optionally refine our set of nearest neighbors by evaluating the
true similarity over a small set of candidates [13]. The result
is a significant speed-up over an exhaustive search using the
ground truth similarity metric.

B. Time series similarity

Time series similarity measures can roughly be classified
into two groups: those that capture shape and those that



capture higher level or global structure [9]. The most popular
shape-based approach is dynamic time warping (DTW) [4].
It has been shown to be very effective in a wide variety
of settings and applications. It is computationally expensive
(O(T 2) for comparing two time series each of length T ),
but researchers have shown a variety of ways to speed it up
[23][24][25][10]. A more significant weakness is the fact that it
does not obey the triangle inequality and so does not constitute
a true distance metric. This prevents its use in kernel methods
without modification [26]. A generalization of DTW called the
Global Alignment (GA) kernel, which computes the similarity
between two time series based on all possible alignments, has
been shown to produce positive definite kernels and is often
competitive with DTW [15].

Structure-based similarity measures attempt to capture
higher level structure in the time series. [27] first convert
univariate time series to a symbolic representation and then
construct histograms over a “vocabulary” of symbol subse-
quences. They call this a bag-of-patterns representation. Also
included in this general category are model-based approaches,
which compare time series using an assumed model. [7]
describe a kernel based on echo state networks that first trains a
recurrent reservoir model and then compares two time series in
the model space [7]. [8] propose an autoregressive time series
kernel (ARK) based on linear vector autoregressive models
that eliminates the two-step “train, then compare” process by
showing it can be formulated as a covariance kernel.

Here we describe four representative similarity measures
that can be combined with kernelized hashing to yield fast
similarity search over multivariate time series. However, our
framework applies to any time series similarity or distance.

Multivariate dynamic time warping. Dynamic time warp-
ing was first proposed nearly fifty years ago and remains one
of the gold standards for comparing time series. Suppose we
have a pair of time series X ∈ RP×T and X ′ ∈ RP×T ′

and a measure of discrepancy d(x(t1),x′(t2)) between a pair
of time points x(t1) and x′(t2), one from each time series,
where t1 and t2 need not be equal. For example, we might
use the squared Euclidean distance between these points:

d(x(t1),x′(t2)) = ‖x(t1)−x′(t2)‖22 =

P∑
i=1

(xi(t1)− x′i(t2))
2

Next we define an alignment (or warping function) λ =
{(1, 1), . . . , (tj , t

′
j), . . . , (T, T

′)} as a list of non-decreasing
pairs of indices of X , X ′ [15]. λ satisfies these properties:

• |λ| ≤ T + T ′ − 1.
• λ(j + 1) ≥ λ(j) for all j = 1, . . . , |λ|.
• (1, 1) ≤ λ(j) ≤ (T, T ′) for all j = 1, . . . , |λ|.
• λ(j + 1) − λ(j) ∈ {(0, 1), (1, 0), (1, 1)} for all j =

1, . . . , |λ|.

The jth pair of indices aligns the points x(λ(j, 1)) and
x(λ(j, 2)). Every point must be aligned, and we only allow
forward movements along X or X ′. We then define the λ-

alignment distance between X and X ′ as

Dλ(X,X ′) =

|λ|∑
j=1

d(x(λ(j, 1)),x′(λ(j, 2))

We then define the multivariate dynamic time warping
(MDTW) distance as the minimum λ-alignment distance over
a set of possible alignments given by Λ(X,X ′):

MDTW(X,X ′) =
1

|λ∗|
min

λ∈Λ(X,X′)
Dλ(X,X ′)

where λ∗ = arg minλ∈Λ(X,X′)Dλ(X,X ′). We normalize
the λ-alignment distance by |λ∗| so that we can compare
MDTW distances within a database of variable length time
series. To convert MDTW distance to similarity, we use
a radial basis function (RBF) kernel: κMDTW(X,X ′) =
exp{−MDTW(X,X ′)/(2σ)} where σ is a parameter we
can choose or tune. In our experiments, we let σ =
medianX,X′∈D MDTW(X,X ′), i.e., the median MDTW
distance between time series in our database.

MDTW is computationally expensive, requiring O(T 2)
evaluations of our discrepancy function. One of the main
ways to speed it up is to impose constraints on our set of
alignments Λ. For example, the Sakoe-Chiba band requires
that aligned points be within a certain number of steps of
one another, i.e., that |λ(j, 1)− λ(j, 2)| ≤ C [23]. In practice
such constraints are implemented by using a limited window
of possible alignments, but formally we add weights to the
definition of Dλ, such that any two points that violate a
constraint (e.g., fall outside the Sakoe-Chiba band) receive
a very large discrepancy. The computational complexity of
MDTW with the Sakoe-Chiba band is O(TC), which can be
a relatively large gain if T is large but C is small. The price
we pay for the speed-up is potentially suboptimal alignments.

Global alignment kernels. MDTW does not obey the
triangle inequality and cannot be used (without modification)
to define a positive definite kernel, a requirement for KLSH.
MDTW also has a practical limitation: it defines distance based
only on the optimal alignment between time series, ignoring
other potentially poor alignments. A reasonable alternative
might consider all possible alignments, in order to reward pairs
of time series with multiple good alignments.

Global alignment kernels address both the theoretical and
pragmatic limitations of MDTW [15]. We can think of a global
alignment (GA) kernel as a weighted average over all possible
λ-alignment distances in Λ(X,X ′), smoothing out the λ-
distances of outlier alignments (i.e., unusually small or large
distances). More formally, [15] defines a global alignment



kernel as an exponentiated soft-minimum:

κGA(X,X ′) =
∑

λ∈Λ(X,X′)

exp{−Dλ(X,X ′)}

=
∑

λ∈Λ(X,X′)

exp{−
|λ|∑
j=1

d(x(λ(j, 1)),x′(λ(j, 2))}

=
∑

λ∈Λ(X,X′)

|λ|∏
j=1

exp{−d(x(λ(j, 1)),x′(λ(j, 2))}

=
∑

λ∈Λ(X,X′)

|λ|∏
j=1

s(x(λ(j, 1)),x′(λ(j, 2))

where the function s(x(t1),x′(t2)) gives a measure of similar-
ity between time points, analogous to the discrepancy function.
This is also called the local kernel within the framework
of mapping kernels, a recent generalization of convolutional
kernels. [28] describe a set of conditions under which a
mapping kernel is guaranteed to be positive definite for all
local kernels, and [15] show that GA kernel satisfies these with
only the mild assumption of geometric divisibility. Informally,
this means that for positive definite local kernel s(x,y), the
ratio s(x,y)/(1+s(x,y)) is also positive definite. This means
that we should only use geometrically divisible kernels in our
GA kernel definition to ensure its positive definiteness. This
excludes, for example, Gaussian and Laplace kernels [15].

Like MDTW, GA kernel runs in O(T 2) but can be sped up
to O(TC) using a second local kernel ω(t, t′) over positions
(instead of values), which is then multiplied by the similarity
kernel. [15] recommend using a triangular kernel: ω(t, t′) =
(1− |t− t′|/C)+. This is analogous to the Sakoe-Chiba band.

Vector autoregressive kernels. The previous two kernels
measure time series similarity based on shape. An alternative
paradigm involves comparing time series in terms of higher
level structure, such as temporal dependencies and correlations
between different variables. Such structure is often detected
by first specifying a type of model (often parametric and
probabilistic) and then fitting a separate model to each time
series to be compared. We can then measure similarity between
time series based on the similarity of their model parameters.

One simple but very effective model is linear vector
autoregression (VAR) [29]. An order-L VAR or VAR(L)
model for a P dimensional time series specifies that xi(t)
is equal to a linear combination of observations of all P
variables from the previous L time steps plus some zero mean
Gaussian noise: xt =

∑L
l=1Alxt−l + b + εt. L is the lag,

A1, . . . ,AL ∈ RP×P are the transition matrices, b ∈ RP the
intercept, and ε ∼ N (0,Σ) the noise. We can rapidly train a
VAR(L) model on a time series X ∈ RP×T using linear
regression. We first preprocess the data into two matrices,
Z ∈ RP×(T−L) and W ∈ R(PL+1)×(T−L). Z contains T−L
observations of each variable, which we stack horizontally
to form a matrix of responses. W contains T − L lagged
windows that we use to predict the next time step, which we
reshape into feature vectors for our regression. We then solve

the ordinary least squares problem Z = BW . The resulting
B̂ = ZW−1 contains our transition matrices and intercept.
We can then compare two time series on the basis of their
respective VAR(L) transition matrices and intercepts.

[8] do away with the two step “train, then compare” process
for VAR-based similarity by formulating a VAR-related covari-
ance kernel using the Z and W matrices. Using a Bayesian
linear regression framework with a non-informative prior, they
define the following kernel function:

κVAR(X,X ′)

=
(
|W>W∆ + Ic|1−α + |W>W∆ + Z>Z∆ + Ic|α

)−P/2
where W = [W W ′], Z = [Z Z ′], c = T + T ′ − 1, and α
depends on P and the degrees of freedom d of the matrix-
normal inverse Wishart prior but can be treated as a tunable
parameter. Note that this is the Gram matrix formulation; there
is also a Variance matrix formulation. They are equivalent but
give different computational performance, depending on the
relative sizes of T and P . [8] demonstrate that under certain
conditions (specifically d > P − 1), κVAR is positive definite
and infinitely divisible, such that κ1/n

VAR is also positive definite
for all n ∈ R. The latter property is especially convenient
because it means that we can substitute a different exponent
for −P/2 to make the result more numerically stable.

The VAR kernel is computationally expensive. The Gram
formulation above is Õ(P + T 3), while the Variance for-
mulation is Õ(T + P 3). If T or P is small (i.e., our time
series are short or low dimensional), then we have a choice of
formulation that will run efficiently. However, if T and P are
both large, the VAR kernel may be slow and even intractable.

Euclidean distance. Euclidean distance (ED) is among the
simplest of time series distance measures. We can think of ED
as an alignment-based kernel with a fixed specific alignment.
The main open question is how to apply ED for two time
series with different lengths; there are a variety of choices
(truncation, extension, resampling, interpolation), though none
seems particularly justified. We choose a simple strategy: if the
shorter time series is X ′, we append T −T ′ copies of x′(T ′)
to the end of X ′ so that the result has the same length as
X . Using the language of λ-alignments, we define the ED
alignment of two time series X and X ′ with T ′ < T :

λED = {(1, 1), . . . , (T ′, T ′), . . . , (T − 1, T ′), (T, T ′)}

and then define variable length time series ED as

ED(X,X ′) =
1

T

T∑
j=1

d (x(λED(j, 1)),x′(λED(j, 2)))

This seems preferable to, for example, truncating the longer
time series (which discards potentially useful information) or
just choosing an alignment at random. We might consider us-
ing a model (e.g., fitting a line or training a VAR(L) model) to
extend the shorter time series, but doing so adds computational
complexity for a presumably small improvement, when the
primary virtue of ED is its O(N) speed. As in the case of



MDTW, we normalize by the length of the longer time series
so we that can fairly compare distances within our database.

To convert Euclidean distance to similarity, we use
a radial basis function (RBF) kernel: κED(X,X ′) =
exp{−ED(X,X ′)/(2σ)} where σ is a parameter we
can choose or tune. In our experiments, we let σ =
medianX,X′∈D ED(X,X ′), i.e., the median Euclidean dis-
tance between time series in our data.

While this seems hopelessly naive, researchers have repeat-
edly shown that ED is often competitive with more sophis-
ticated approaches, particularly for large databases of long
time series [9]. Our approach seems reasonable for clinical
time series: extending a shorter time series by repeating the
final measurement assumes that the patient’s final condition is
relatively stable, which is true for both healthy patients who
were discharged and in-hospital mortalities.

C. Kernelized hashing framework

Now we provide an overview of a kernelized time series
hashing framework. Suppose that we have a database D of
P -dimensional, variable length MVTs, where |D| = N and
that we want to represent each with a B bit binary code. We
can apply KLSH by performing the following steps:

• Choose a similarity kernel (e.g., MDTW, GA, VAR, ED).
• Randomly choose a sample S = {Xj}Mj=1 ⊂ D, with
M � N , and form the M -by-M kernel matrix K.

• Form B hash functions. For the jth function, choose a
subsample Rj ⊂ S of R < M examples to estimate the
jth weights vector wj = K−1/2eRj

.
• Use the hash functions to generate B bit binary codes for

each time series in D.
• For a new query point Xq , generate its B-bit hash code.
• Search for the k-nearest neighbors of Xq using standard

LSH techniques (e.g., linear scan of binary codes or a
hash plus a small number of object comparisons).

We can see that while the training stage (i.e., learning
our hashing functions) is time-consuming, searching for the
nearest neighbors of a new query should be dramatically
faster. An exhaustive search over binary codes requires O(N)
comparisons, but on modern hardware, these are incredibly
fast. If we apply the (1 + ε)-near neighbor indexing strategy
of [11], then we use the binary codes to generate a list of
O(N1/(1+ε)) candidate nearest neighbors and then perform
that many similarity comparisons to choose the K best (the
choice of ε trades off speed and accuracy). Our perceived
speedup will also governed by two other factors: (1) our choice
and implementation of similarity (or distance) function; and
(2) the “size” of our database in terms of N , P , and T . If
we have a fast similarity function (e.g., ED or MDTW with a
narrow Sakoe-Chiba band and early stopping heuristics) and
a small number of short univariate time series, then we may
notice little or no gain. Even for slower similarity functions, if
N is relatively small and we use clever indexing or storage, we
may perceive little or no speedup. However, for an expensive
similarity function (of the kind that we use for multivariate

time series) and a large database, we can expect substantial
gains.

IV. EXPERIMENTS

A. Data

We performed experiments with a number of different data
sets from different domains, including two large, real world
clinical databases and one EEG database. Each data set has its
own unique set of properties, dynamics, and challenges, but
they are all multivariate time series data sets with moderate
to large numbers of examples N , moderate dimensionality P ,
and medium to long (and often variable) lengths T .

PICU data. The PICU data set (picu), a version of which
was first described in [5], is a fully anonymized collection of
clinical MVTs recorded over a decade in the pediatric ICU at
Children’s Hospital LA (CHLA). The version we work with
has roughly 10,000 MVTs of P = 13 variables, including vital
signs (e.g., heart rate), lab results (e.g., glucose), and subjective
assessments (e.g., Glascow coma score). The duration of ICU
visits is highly variable, though the vast majority of stays
last fewer than seven days (T = 128 for an hourly sampling
rate) and over half last fewer than two days (T = 48). This
data set in part motivates our interest in this problem, as
doctors and clinical researchers are increasingly interested in
quantifying patient similarity in terms of complex temporal
patterns (rather than a priori personal facts, like age or gender)
and of discovering or searching for similar cases in large
historical EHR databases.

This data comes with many interesting potential labels and
responses; we utilize two in our experiments. The first is the
patient’s primary diagnostic category; each patient is assigned
a single primary diagnosis, which comes from one of eleven
different categories (there are originally fourteen categories,
but we combine some of the extremely small ones). We use
this category as a multiclass label. The second response we
use is the Pediatric Cerebral Performance Category (PCPC)
code, an integer-valued score between 1 and 5 indicating a
patient’s level of cognitive function [30].

Real world clinical time series data are very challenging to
work with, and standard techniques often fail dramatically. [5]
describe the challenges (and potential) of this of data in elegant
detail. These include missing time series, irregular sampling,
wildly different dynamics between variables, noise, and age
dependency. Like [5], we impose an hourly bucketing on the
data (taking the mean of multiple measurements within the
same bucket). Where this creates missing values, we propagate
forward the previous measurement; variables with a sampling
frequency of less than an hour typically change very slowly, so
this is a fairly reasonable assumption. When a time series are
missing entirely, we impute a normal value for this variable;
this is also a reasonable assumption, as variables are often
missing because clinical staff believed them to be normal and
chose not to measure them.

Surgical data. The surgical data set (surgical) includes
fully anonymous MVT time series extracted from an oper-
ating room anesthesia database at CHLA. It includes over



60,000 MVTs that describe patient status and treatment during
surgery. This data is sampled at a much higher frequency than
the picu data set (roughly one measurement/minute, versus
one measurement/hour), yielding richer and longer time series.
There are P = 15 variables, consisting largely of vital signs,
and length varies between T = 30 samples and values of T
in the thousands. The median value of T is 80. surgical
exhibits many of the same phenomena as picu (missing
data, irregular sampling, noise), though less extreme due to
the higher sampling frequency. We apply the same kind of
preprocessing to surgical as we did to picu.

Clinical researchers are interested in searching this database
for adverse events (for example, a desaturation or a bron-
chospasm). However, only about 1% of cases have a label
(all positive); the remaining cases have no label, positive or
negative. This is both a limitation and an opportunity. It limits
our ability to assess the performance of search algorithms
on the currently labeled data set. However, it also illustrates
a potential use case for time series similarity search over
large medical databases: finding and labeling potential adverse
events in such databases would enable both clinical research
and quality assurance studies. However, finding such events
is a needle in a haystack problem for clinicians; the current
suite of software tools available at most hospitals limit them
to searching for keywords in free text notes (unreliable) or
“eyeballing” thousands of cases (tedious and unreliable).

EEG data. The EEG Database data set2 (eeg) is a classic
machine learning benchmark data set from the UCI Machine
Learning Repository [31] that was originally collected during a
study on the correlation between EEG patterns and alcoholism.
It is a reasonably large MVT data set, including nearly 11,000
MVTs with P = 64 channels and consistent length T = 256.
While it is smaller than surgical, it has four times as many
variables and is longer on average. It includes binary labels
indicating whether the subject is an alcoholic and is reasonably
class balanced (64% versus 36%).

Normalization. In the above data sets, the ranges and
magnitudes of different variables vary substantially; using this
data as is could bias our time series distances. Furthermore, it
is well known that both the shape-based kernels (MDTW and
GA) work best with zero mean, unit variance data and that
VAR models make similar assumptions, including stationarity.
Thus, we applied standardization, including shifting (e.g., by
the mean) and scaling (e.g., by the standard deviation). We
used the overall mean and standard deviation (i.e., computed
across all training data), as opposed to each individual MVT’s
statistics. While this does not in fact ensure that each time
series is zero mean, unit variance, we feel this was a reasonable
compromise for our purposes.

B. Design and goals

The goal of our experiments is to demonstrate that kernel-
ized hashing can be utilized to speed up time series similarity
search based on a variety of different similarity metrics, as well

2https://archive.ics.uci.edu/ml/datasets/EEG+Database

as to confirm our hypothesis that no one similarity measure
is best. To that end, we evaluate the performance of our
algorithms using the following three criteria inspired from
parallel work on hashing in computer vision [12]:

1) Semantic accuracy: For data sets where ground
truth labels are available, we measure the seman-
tic accuracy sacc(Xq, knn(Xq)) of a knn search
by the fraction of nearest neighbor labels that agree
with the Xq’s label, where sacc(Xq, {Xj}Kj=1) =(∑K

j=1 1{yq = yj}
)
/K. This evaluates the potential

efficacy of using our search procedure for, e.g., knn
classification tasks. We are less interested in the actual
semantic accuracy of a particular search technique than
we are in the gap (or difference) between the semantic
accuracy of an exhaustive search using a similarity
measure and the semantic accuracy of a KLSH search
based on the same measure. We define this gap as

gap (Xq, knnGT, knnKLSH)

= sacc(Xq, knnGT(Xq))− sacc(Xq, knnKLSH(Xq))

If this gap is small, then our hashing procedure is doing
a good job of approximating an exhaustive search; if it
is large, then we face a trade off between computational
performance and accuracy. Because we use only prede-
fined kernels, there is no reason to expect our hashing
procedure to beat the exhaustive search, and such results
are probably anomalous. Note that we use the same
measure of accuracy for both binary and multiclass
labels. For the integer-valued PCPC response in picu,
we measure semantic accuracy using the average mean
squared error (MSE) between the query and nearest
neighbor responses.

2) Nearest neighbor recall: We can assess the efficacy of
our hashing procedure by examining the degree to which
it approximates the true neighborhood around a query
Xq . We measure this in the form of recall: how many
nearest neighbors does KLSH need to retrieve in order
to discover a fixed number K of ground truth nearest
neighbors (i.e., using the similarity measure). This can
be plotted like a recall-precision curve, with the number
of nearest neighbors returned by KLSH on the x-axis
and the count of the K target nearest neighbors found
on the y axis.

3) Relative speed-up: finally, we are interested in just
how much of a speed-up we get using hashing vs. an
exhaustive search. We measure this as a ratio of the
average query time for the exhaustive search (timeg)
divided by the average query time for a hashing-based
search (timeh): speedup = timeg/timeh. The larger
this number, the bigger the speed-up.

For each experiment, we perform stratified 10-fold or 5-
fold cross-validation to estimate our performance statistics.
We average accuracy, recall, and speed-up across queries and
then take the mean of averages across folds. We use no special
preprocessing of the data beyond basic standardization and do



not tailor our kernels to each data set. For the VAR kernel,
we used a fixed lag of L = 5, as suggested by [8]. When
performing hashing-based search for nearest neighbors, we
perform a single linear scan in the space of binary codes, with
no subsequent set of comparisons using the core similarity
function. It is worth noting that including this last step would
improve our accuracy.

C. Results and Discussion

Table I shows the relative speed-up (timeg/timeh) that we
get from using KLSH for each kernel: we define this as the
ratio of search time using the true similarity function (timeg)
divided by the search time using the hashing-based approach
(timeh). We observe a fairly significant gain in speed across
the board, demonstrating the generality of our approach. There
are two other important trends in the speed-ups. First, the more
expensive the kernel, the more speed-up we receive from using
hashing. Second, the speed-up also increases as our data set
size grows. The alignment kernels (MDTW and GA) receive
over two orders of magnitude boost in their speed for the huge
surgical data set. These results confirm our intuition that
hashing is a very useful tool for time series similarity search,
if our search accuracy is acceptable. The bottom right bar plot
in Figure 1 shows the actual average query times on the picu
data set. The ground truth VAR kernel proved intractable for
the surgical and eeg data sets; in this case, hashing is the
only viable solution.

We present semantic accuracy and gap results in Table II.
We see that for all kernels, the gap in accuracy between the
ground truth similarity metric and KLSH search is usually
small and always less than 0.05. This is pretty remarkable
given that we are retrieving nearest neighbors using a pure
linear scan of the binary hash codes and performing no
distance-based comparisons to refine our results. Also worth
noting is that, as we anticipated, there is not a decisive
winner among the kernels, though GA tends to have the best
performance (in terms of both semantic accuracy and gap) on
average. ED performs surprisingly well on picu; we see in
Figure 1 that it has the best gap for both diagnosis accuracy
and PCPC MSE loss.

One curious result in Figure 1 is the discrepancy between
the semantic accuracy results in the top left plot and the
10-nearest neighbor (10nn) recall in the bottom left. KLSH
does a much worse job of capturing the true neighborhood
structure of MDTW and VAR than it does with GA, but there
is relatively small difference in terms of semantic accuracy.
This can be explained by the labels that we chose to use for
our picu experiments. Notice in Table II that all ground truth
similarities have low 10nn semantic accuracy (around 0.2),
suggesting that there is little correlation between the structure
of any local similarity neighborhood and the labels. This is
not surprising, given what we know about the source of our
labels. We used patient primary diagnosis codes from a custom
database for our classification task. Patients typically receive
multiple diagnostic codes, but only one is designated as the

primary diagnosis, based on a variety of factors not limited to
patient status and physiology.

For that reason, we feel that the neighborhood recall results
are more significant for assessing the success of our time series
hashing framework. Figure 1 and Figure 2 show the 10nn
recall results for picu and surgical, respectively. We see
that GA does a modest job of recalling the true neighborhood
structure for query points. ED works well for picu but is
terrible for surgical. MDTW does not appear to work
well at all; this confirms what theory suggests, namely that
MDTW is a poor kernel without significant modifications. GA
is appears to be the superior alignment-based similarity for
kernel methods. Again, we note that no one similarity works
best for all data sets.

It is disappointing that VAR does not perform well on the
picu data set (the only one for which the ground truth search
completed). There are several possible explanations, the main
one being that it makes strong modeling assumptions about
the data (linear correlations, stationarity, etc.) that are likely
not true for these real world data sets. Linear models seem
especially poorly suited for the PICU data where the sampling
rate is so low. Additionally, VAR has many tunable parameters
with which we did not experiment, foremost among them the
lag parameter L. We omit eeg results because the ground truth
VAR search failed to terminate; this represents an extreme but
important case where hashing is the only feasible option.

Relative speed-up
Kernel picu surgical eeg
ED 9.78 76.50 18.70
MDTW 19.13 163.00 31.73
GA 18.17 175.02 32.08
VAR 20.34 − −

TABLE I: Relative speed-up (timeg/timeh) for each time series
kernel and data set, when performing an exhaustive search.
The ground truth VAR kernel was intractable for surgical
and eeg.

10nn semantic accuracy and gap
picu eeg picu

(diagosis) (PCPC L2 loss)

ED sacc 0.205 0.561 2.36
gap 0.010 0.046 0.053

MDTW sacc 0.204 0.565 2.53
gap 0.047 0.049 0.41

GA sacc 0.210 0.579 2.45
gap 0.032 0.036 0.193

VAR sacc 0.181 − 2.41
gap 0.040 − 0.121

TABLE II: Semantic (label) accuracy and gap for 10nn re-
trieval across data sets and kernels. For PCPC codes, we
measure the average squared difference from the query point’s
score (i.e., lower is better).
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Fig. 1: Results for picu data set. Top row: semantic accuracy gap for diagnosis label and PCPC code. Bottom left: 10-nearest
neighbor recall. Bottom right: average query times.
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V. CONCLUSION AND FUTURE WORK

There is a growing need for fast and accurate similarity
search over multivariate time series, particularly in health care.
Many time series similarity measures have been proposed by
researchers, but no one metric works best across all data sets
and problems. What is more, most of these approaches do not

scale to large time series data sets. Kernelized hashing presents
a flexible, unified approach to speeding up time series search,
regardless of choice of representation and distance measure.
We have described how the general framework of kernalized
locality-sensitive hashing (KLSH) can be combined with ar-
bitrary time series similarity metrics to yield efficient and



accurate similarity search. Using three large, complex medical
data sets, we demonstrated empirically that this framework
is orders of magnitude faster than existing approaches and
provides an acceptable trade off between speed and accuracy.

The future of this line of work is quite promising. A logical
next step would be to incorporate other time series metrics
into the KLSH framework and even combine multiple metrics
to capture different notions of similarity. We would also like
to incorporate supervision into the hash function learning,
which has been shown to work well for images [17] [18].
We focused our attention on locality sensitive hashing and a
handful of representative similarity functions, but the kernel
approach may be applied to other hashing frameworks. Finally,
we feel that the major limitation of this framework is that it
is non-adaptive. We would like to explore adaptive, learning-
based approaches for selecting coding functions, such as deep
learning [21] [18]. We feel that these will not only improve the
performance of hashing-based search but may also be useful
for discovering interesting structure in and generating novel
representations of multivariate time series.
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