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Introduction
Critical illness is dynamic and complex, but physicians often diagnose and treat based on parsimonious, static sets
of symptoms and signs. For example, the Berlin definition of acute respiratory distress syndrome uses static criteria,
including a threshold on the partial pressure of oxygen.1 The Pediatric Risk of Mortality (PRISM III) score considers
only the extreme values of a handful of variables during a 12-24 hour period.2 However, the increasing volume of dig-
ital health data offers an opportunity to use computational methods to learn richer descriptors of illness (physiomes3 or
phenomes4) that incorporate temporal dynamics and more variables. In this work, we use deep neural networks to mine
patterns from multivariate clinical time series. We apply this to a large pediatric intensive care unit (PICU) database
from Children's Hospital Los Angeles (CHLA)3 to learn patterns that are associated with known critical illnesses.

Methods
We want to train a deep neural network to recognize temporal patterns of length S in time series of P variables. This
neural network has D = PS input units and hidden layers with sizes of our choosing. We use fully connected lay-
ers, linear activations, and sigmoid nonlinearities. We pretrain each layer as a denoising autoencoder using stochastic
gradient descent to minimize cross-entropy and finetune the weights with labeled data by adding an output layer and
performing backpropagation.5 From a data set of M time series with lengths T ≥ S, we extract training set of at
least M(T − S + 1) overlapping patterns. Finally, we efficiently train a collection of neural networks that detect pat-
terns of increasing lengths by using the weights of smaller neural networks to initialize the training of larger networks.6

Experiments
We evaluated our framework on a preprocessed subset of the CHLA PICU database, which includes over 8,478 time se-
ries of 13 variables sampled at an hourly rate.3 We trained a series of three-layer neural networks on all overlapping 4, 8,
12, 16, 20, and 24 hour subsequences. We used a respiratory diagnosis label for supervised finetuning. Figure 1 shows
physiomes visualizations for two third-layer hidden units from a 12-hour neural network. For each, we found training
examples with the highest activations and plotted the mean and standard deviation trajectories for each variable. In
Figure 1(a), we see elevated capillary refill rate (CRR), end-tidal CO2 (ETCO2), and fraction inspired oxygen (FIO2).
These indicate dehydration and breathing problems, consistent with complications due to chronic bronchopulmonary
dysplasia (BPD). In Figure 1(b), we see elevated CRR, ETCO2, and FIO2, plus elevated heart rate and respiratory rate
(indicating respiratory distress) and declining cognitive function (GCS). This physiome is associated with pneumonia.

We also performed a pair of classification experiments in which the goal was to detect patients with respiratory con-
ditions based on only their first 12 or 24 hours post-admission. We used a linear support vector machine with squared
hinge loss and l2 penalty as our classifier and five-fold cross validation to estimate the mean and standard deviation
of the area under the receiver operator characteristic curve (AUC). We use the physiomic representation of each pa-
tient's first 12 or 24 hours of data (i.e., the third-layer activations in the corresponding neural network) as features. We
compare the performance of these features with several baselines, including the raw time series and PRISM III-style
extreme value features. Figure 1(c) shows the AUC for the baselines, as well as several neural network variants, in
both tasks. Most of the neural network-based features are superior or equal to the PRISM III-style features.

Discussion
Our results are preliminary but very promising. The visualized physiomes, along with our classification results, demon-
strate that we can learn trajectory-like physiomes that are physiologically plausible, associated with critical illness, and
useful for classification. Consistent with the findings of Lasko, et al., our learned features did not dramatically beat
the hand-engineered features (e.g., PRISM III-style) in classification.4 This, however, does not diminish their utility or
interest. The ability to learn useful features from data via automated means, rather than a painstaking manual process,
could be a boon for future clinical research. Also, we believe that such physiomes may prove an intuitive supplement to
traditional signs and symptoms. One question that arises is when patients were diagnosed with respiratory conditions;
unfortunately, this information is not available in our data set. Also, in some cases we may be detecting the results of
treatment, but we cannot verify this as treatments are not available in the current version of the CHLA PICU data set.
Both of these questions point to the broader challenges of working with observational medical data.



(a) Physiome associated with bronchopulmonary dysplasia.

(b) Physiome associated with pneumonia and respiratory distress.
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(c) Classification AUC for different features.

Figure 1: Experimental results on the CHLA PICU data subset.
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