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Abstract
Opioid analgesics, as commonly prescribed medications used for relieving pain in patients, are especially prevalent
in US these years. However, an increasing amount of opioid misuse and abuse have caused lots of consequences.
Researchers and clinicians have attempted to discover the factors leading to opioid long-term use, dependence, and
abuse, but only limited incidents are understood from previous works. Motivated by recent successes of deep learning
and the abundant amount of electronic health records, we apply state-of-the-art deep and recurrent neural network
models on a dataset of more than one hundred thousand opioid users. Our models are shown to achieve robust and
superior results on classifying opioid users, and are able to extract key factors for different opioid user groups. This
work is also a good demonstration on adopting novel deep learning methods for real-world health care problems.

1 Introduction

Opioid analgesics are effective, commonly prescribed medications used for management of both acute and chronic
pain in patients with many different medical conditions and following many medical procedures1,2. Prescription of
opioids in the United States is high, and between 2011 and 2012, nearly 7% of the adult population was estimated
to have taken an opioid in the last thirty days3,4. However, as reported in several previous studies, these medications
do not effectively control pain in all patients5,6,7, and many patients are at high risk of adverse effects due to these
medications8,7. A meta-analysis of randomized trials found that 80% of patients treated with opioids for chronic,
non-cancer pain experienced at least one adverse event, with symptoms ranging from mild nausea to life-threatening
respiratory depression8. In addition, the US is experiencing an opioid epidemic. Specifically, opioids are increasingly
misused and diverted from their intended recipients, and abuse and overdoses have risen alarmingly in the last ten
years9. The rate for drug overdose deaths, driven largely by opioid overdose, increased approximately 140% from
2000 to 201410. In 2017, one of the largest pharmaceutical distributors in US was fined a record $150 million for
failing to report suspicious orders linked to the opioid addiction epidemic11. Indeed, prompt and proper actions need
to be taken to achieve a balanced opioid usage strategies, stem the tide of this public health epidemic, and prevent
further devastating consequences.

The factors that contribute to opioid use – particularly the patient factors that contribute to long-term, chronic use of
these medications and/or dependence or abuse of these drugs are poorly understood. Previous work found significant
increases in incident opioid prescriptions for chronic, non-malignant pain between 1997 and 2005 in the Kaiser Per-
manente and Group Health populations12. Additionally, the proportion of the population receiving long-term therapy
nearly doubled in the same time frame. The most common indications for long-term use in this study were chronic
back pain, extremity pain, and osteoarthritis. Apart from these data, however, little is known about who receives
opioid analgesic prescriptions in an average community. Additionally, with the exception of a few studies exploring
the role of mental illness, depression, or previous patterns of substance abuse13,14,15, patient characteristics that might
contribute to these adverse outcomes have not been described.

The rapid growth in electronic health record (EHR) adoption provides a wealth of patient information that could
help identify patients at high risk of long-term opioid use or dependence. If one predictive or classifying model can
leverage such data for analysing opioid usage and/or dependence, that is, the model has the ability to identify patients
likely to benefit from or get addicted to these medications and target therapy more appropriately to them, we can
expect those models to be able to extract the knowledge of the clinical characteristics associated with the progression
of a short-term to an episodic or long-term opioid prescribing pattern and aid in the identification of at-risk patients
and provide the basis for developing targeted clinical interventions. In the era of data explosion, however, more
powerful data-driven learning models are in urgent demand in order to fully utilize the large amount of EHR data,
identify meaningful features for opioid dependence or abuse, provide precise information for clinicians to make early
decisions, and ultimately contribute to better personalized health care quality.



In this paper, we utilized state-of-the-art deep learning models on a much larger data set for opioid usage prediction
and factor investigation tasks. Deep learning models have brought lots of significant successes including but not
limited to recognizing and distinguishing thousands of human faces at a time16,17, understanding, translating, and
generating human languages18,19, and mastering games and beating top human professional players20. Deep learning
is also revolutionizing the health care domain with the focuses on a variety of important and challenging tasks, such
as computational phenotyping21,22, predictive modeling23,24 and medical imaging analyzing25,26. It is well known
that deep learning solutions equipped with ample computational resources and large-scale datasets are able to go
far beyond traditional statistical methods and shed light on intriguing real-world applications in health care. In this
paper, we demonstrated our proposed deep learning solutions for identifying opioid user groups and showed that they
provided superior classification results and outperformed other widely used learning baseline methods. We validated
important factors and risk factors identified by deep learning models with previous clinical studies. Our work also
provided a practical example on properly adopting novel deep learning methods for real-world health care problems
leveraging large-scale EHR data.

2 Data and Task Descriptions

In this work, we took a cohort of 142 377 patients from the Rochester Epidemiology Project (REP)27. The total
number of people identified by REP, as shown in previous work28, cover about 98.7% of the population that reside
in Olmsted County by the US Census. Thus, this large-scale dataset is well-representative for this population-based
study and suitable for powerful and complex deep learning models.

Cohort Selection First, all outpatient drug prescriptions were obtained from Mayo Clinic and the Olmsted Medical
Center from January 1, 2003 through March 31, 2016 for patients who authorized the use of their medical records for
research purposes. The drug prescriptions were standardized using the 2016 version of RxNorm29. We kept the records
for all patients who received at least one opioid analgesic prescription between July 1, 2013 and March 31, 2016 and
did not have any opioid prescriptions 6 months prior to their first prescriptions within the study period. The analgesic
prescriptions were determined by the RxNorm Code, with either National Drug File Reference Terminology (NDF-
RT) code C8834 (Opioid Analgesics) or ingredient code 10689 (Tramadol) and 352362 (Acetaminophen/Tramadol).
In order to remove incorrectly duplicated and modified prescription records, only the last prescription would be kept if
same drug prescriptions were made for one patient within 30 minutes. A cohort of N = 102 166 patients was created
after these data cleaning and selection steps.

Group Identification All patients were classified into three groups, namely short-term users (ST), long-term users
(LT), and opioid-dependent users (OD). ST and LT groups were defined by the CONSORT study30 and the same
as in our previous work31. Episodes of opioid prescription lasting longer than 90 days and with 120 or more total
days supply or 10 or more prescriptions were classified as long-term (NLT = 21 570), while others were classified
as short-term (NST = 80 596). NOD = 749 opioid-dependent patients were further identified by the diagnosis of
“opioid dependence” from their problem lists. It is noting that the relatively low identification rate might be due
to the fact that only part of dependent patients got explicit diagnosis in the problem lists by doctors. All identified
dependent users were validated by clinicians. Table 1 shows detailed data characteristics of each patient group, which
also match the finding in our previous related study on a smaller dataset31. Two classification tasks were considered
in our experiments: 1) whether the patient will become a long-term opioid user or just a short-term opioid user (Task
ST-LT), and 2) whether a long-term opioid user is an opioid-dependent patient or not (Task LT-OD).

3 Methodology

In this section, we first describe our feature extraction and temporal data processing steps. Next, two deep learning
models deployed in our study are presented: A deep feed-forward neural network model with multiple hidden layers,
and a recurrent neural network model with Long Short-Term Memory which can better model time series data. Several
ways used to improve the model performance and obtain important features are discussed, followed by the descriptions
of some machine learning baselines. In the following part, we use bold capital letter (e.g., W ) to refer to matrix
variable, bold lowercase letter (e.g., b) for vector variable, and unbold letter (e.g., l, D) for scalar, if not specified.



Table 1: Data characteristics of different patient groups.

Short-Term/ST Long-Term/LT∗ Opioid-Dependent/OD All

Count Percentage Count Percentage Count Percentage Count Percentage

Total Number of Patients 80596 78.89% 21570 21.11% 749 – 102166 –

Sex

Men 37981 47.13% 8447 39.16% 345 46.06% 46428 45.44%

Women 42453 52.67% 13075 60.62% 402 53.67% 55528 54.35%

Other/Unknown 162 0.20% 48 0.22% 2 0.27% 210 0.21%

Age

≤ 18 5900 7.32% 447 2.07% 0 0.00% 6347 6.21%

19− 29 13701 17.00% 1311 6.08% 55 7.34% 15012 14.69%

30− 49 27696 34.36% 5416 25.11% 354 47.26% 33112 32.41%

50− 64 18027 22.37% 5570 25.82% 245 32.71% 23597 23.10%

≥ 65 15272 18.95% 8826 40.92% 95 12.68% 24098 23.59%

Race

White 66184 82.12% 19297 89.46% 655 87.45% 85481 83.67%

Hispanic 4151 5.15% 697 3.23% 34 4.54% 4848 4.75%

African American 4131 5.13% 898 4.16% 49 6.54% 5029 4.92%

Asian 3225 4.00% 361 1.67% 3 0.40% 3586 3.51%

Other/Unknown 2905 3.60% 317 1.47% 8 1.07% 3222 3.15%

Mortality
Dead 4481 5.56% 17075 79.16% 628 83.85% 21556 21.10%

Alive/Unknown 76115 94.44% 4495 20.84% 121 16.15% 80610 78.90%

Tobacco
Use

Never/Unknown 46264 57.40% 7159 33.19% 76 10.15% 53423 52.29%

Secondhand Only 746 0.93% 750 3.48% 25 3.34% 1496 1.46%

Past/Current 33586 41.67% 13661 63.33% 648 86.52% 47247 46.25%

First Time of
Anxiety or
Depression

Never 58322 72.36% 11002 51.01% 115 15.35% 69324 67.85%

Before FOT† 10431 12.94% 3230 14.97% 207 27.64% 13661 13.37%

After FOT 11843 14.69% 7338 34.02% 427 57.01% 19181 18.77%

First Time of
Substance

Abuse

Never 70039 86.90% 15283 70.85% 45 6.01% 85322 83.51%

Before FOT 4315 5.35% 1730 8.02% 221 29.51% 6045 5.92%

After FOT 6242 7.74% 4557 21.13% 483 64.49% 10799 10.57%

First Time of
Other

Psychological
Diagnosis

Never 35716 44.31% 3482 16.14% 9 1.20% 39198 38.37%

Before FOT 27627 34.28% 9253 42.90% 412 55.01% 36880 36.10%

After FOT 17253 21.41% 8835 40.96% 328 43.79% 26088 25.53%

Feature Extraction We retrieved structured EHR data of the chosen patients from REP historic sources, Olmsted
Medical Clinic and Hospital, Mayo and Mayo Clinic Health System between January 1, 2003 and March 31, 2016.
We extracted code records with time stamps and other information from three chart tables: diagnoses (DX), procedures
(PR), and prescriptions (RX). The details are shown in Table 2. Instead of taking raw records in these tables, we
mapped all the codes to a higher level code space, for the following two reasons: First, coding systems used in Mayo
were different and often change from time to time32. For example, three different coding systems, ICD-9, ICD-10,
and HICDA (Hospital International Classification of Diseases Adapted) were used for disease records in DX table.
HICDA codes were used only before 2011, ICD-10 codes have not been in use until the year of 2015. This prevented
us from taking one single raw code system and thus a consistent mapping of these conceptually-overlaid codes was
required. Second, since there were tens of thousands of different raw codes in each table, the raw data tables were quite
sparse and difficult to be examined in the feature level. Therefore, we mapped all DX and PR codes into categories
in Clinical Classifications Software (CCS)33 and all RX codes into NDF-RT class. In PR table, we also recorded the
corresponding quantity together alone with the code.
∗Notice all patients included in OD group were also included in LT group.
†FOT refers to the time of the first opioid prescription for each patient.



Table 2: Record table descriptions and statistics.

Table
Name

Descriptions # of Records
Raw Code Mapped Code

Coding Systems Count Coding System Count

DX Diagnosis records 56 229 157 ICD-9, ICD-10, HICDA 43 438 CCS 284

PR
Procedure, service, and
surgical index records

46 386 740
ICD-9, ICD-10,
CPT/HCPCS 34 18 984 CCS 245

RX Prescription records 8 102 477 Ingredient RxNorm Code 2 460 NDF-RT Class RxNorm Code 307

Temporal Data Processing We applied 1-of-K (one-hot) encoding35 on the extracted features and used either the
temporal sum-pooling or segmentations of the encoded features to get numerical features from sparse categorical fea-
tures simply yet effectively. The 1-of-K encoding converts each record line to a single binary vector of the same
length, and temporal sum-pooling and segmentation step (i.e., sum-pooling in each temporal segment) further aggre-
gates features along the temporal direction. For RX table, we used the length of days instead of 1 when applying
1-of-K encoding on prescription records to utilize the important quantitative effective length information for each pre-
scription. For example, a prescription record with length of 4 days was converted into a vector like [0, . . . , 4, . . . , 0].
Our recurrent neural network models were able to handle time series data directly and capture temporal information.
We computed the sum-pooling vector36 in each year and stacked them into a matrix, which we referred as yearly
temporal segmentations. Since the medical records for patients might be of different length, the resulted matrices also
had different length Tseg , thus these matrices could not be directly used in other models including non-recurrent deep
networks and other machine learning baselines. For those model we chose the sum-pooling along all time steps and
thus obtained a vector with fixed length. The length was the sum of the numbers of all mapped features from three
tables (D = DDX +DPR +DRX = 836) in our dataset. The prediction models took the obtained data as the input
and provided predictive results. The entire pipeline is illustrated in Figure 1.

[ICD-9 786.59, May/27/2003]
[ICD-10 K57.30, Aug/25/2006]
……

[ICD-9 89.01, Nov/16/2004]
[HCP 88173, Aug/25/2006]
……

[Med 817579, May/27/2003, 4 days]
[Med 6922, May/27/2003, 7 days]
……

DX Table PR Table RX Table
Raw Data

Feature Mapping

[CCS 102, May/27/2003]
[CCS 146, Aug/25/2006]
……

[CCS 227, Nov/16/2004]
[CCS 234, Aug/25/2006]
……

[C8834, May/27/2003, 4 days]
[C8762, May/27/2003, 7 days]
……

1-of-K Coding  + 
Temporal Sum-Pooling

A vector of length  (𝐷𝐷𝑋 + 𝐷𝑃𝑅 + 𝐷𝑅𝑋)

[1, 2, 0, … , 0, 0, 1, … , 3, 4, 0, … , 9, 0]

𝐷𝐷𝑋 = 284 features 𝐷𝑃𝑅 = 245 features 𝐷𝑅𝑋 = 307 features

A matrix of size  Tseg × (𝐷𝐷𝑋 + 𝐷𝑃𝑅 + 𝐷𝑅𝑋)
1, 1, 0, … , 0, 0, 0, … , 1, 4, 0, … , 7, 0
0, 1, 0, … , 0, 0, 1, … , 2, 0, 0, … , 2, 0

1-of-K Coding  + 
Temporal Segmentation

DNN 
Prediction 
Model

RNN 
Prediction 
Model

Prediction 𝑌𝑝𝑟𝑒𝑑 ∈ [0, 1] 𝑌𝑝𝑟𝑒𝑑 ∈ [0, 1]

Figure 1: An illustration of the proposed pipeline from raw cohort data to final prediction. Left: DNN prediction
model for data with temporal sum-pooling; Right: RNN prediction model for data with temporal segmentation.



Deep Feed-Forward Neural Network (DNN) Model A deep feed-forward neural network model (DNN)37 is com-
posed with multiple non-linear transformation layers. The output of each layer is fed to the next layer as input. For
a DNN model with L layers (i.e., L − 1 hidden layers and one final output layer), the input vector for the lth layer is
denoted as x[l] ∈ RD[l]

, and rectified linear unit (ReLU)38 function is used as the non-linear transformation function
for each hidden layer. The output of layer l is

h[l] = ReLU(W [l]x[l] + b[l]) = max
(
0,W [l]x[l] + b[l]

)
∈ RD[l+1]

,

which is also the input to the next layer x[l+1]. Here W [l] and b[l] are parameters which can be learned via back-
propagation during training. Notice that in our case we had input dimension D[1] = D. We chose ReLU function
because 1) it is shown to not suffer from gradient vanishing problem during training compared with other non-linear
transformations such as sigmoid and tanh functions, and 2) our model investigation step requires it. To conduct binary
classification tasks, we applied sigmoid function σ(x) = 1

1+exp{−x} in the last layer and set the output dimension to

be 1. In other words, we had W [L] ∈ RD[L]×1 and h[L] = σ
(
W [L]x[L] + b[L]

)
∈ [0, 1]. With this proposed DNN

model structure, we could learn the weights by optimizing binary cross-entropy loss function during training, which is

`loss = −
N∑

n=1

(
yn log h[L] + (1− yn) log(1− h[L])

)
,

where yn is the binary label for nth patient. In ST-LT prediction task, yn = 1/0 indicates long-term/short-term opioid
user. In LT-OD prediction task, yn = 1 and yn = 0 are for opioid-dependent and other patients, respectively.

Recurrent Neural Network (RNN) Model In order to handle sequential or temporal data of arbitrary length and
capture temporal information from the data, recurrent neural network (RNN)39 models are widely used. Unlike feed-
forward neural network models, RNN models perform the same operation at each time step of the sequence input,
and feed the output to the next time step as part of the input. Thus, RNN models are able to memorize what they
have seen before and benefit from shared model weights (parameters) for all time steps. In order to capture complex
long temporal dependency and avoid vanishing gradient problems, some modified RNN models such as Long Short-
Term Memory (LSTM)40 and Gated Recurrent Unit (GRU)41 have been proposed with state-of-the-art performance.
Assume the input is a matrix X ∈ RT×D, where T is the number of temporal segmentations and varies for different
patients, and D is the feature dimension. The tth row xt ∈ RD of the matrix represents the encoding vector at time
step t. We used LSTM in our RNN prediction model. At each time step t, LSTM takes the input at that time step xt

and output at previous time step ht−1 to update its inner cell state ct and produce the current output ht as follows:

ft = σ (Wfxt +Ufht−1 + bf ) it = σ (Wixt +Uiht−1 + bi) ot = σ (Woxt +Uoht−1 + bo)

ct = ft � ct−1 + it � tanh (Wcxt +Ucht−1 + bc) ht = ot � tanh (ct)

Here W∗,U∗, b∗ are all model parameters, σ() is the sigmoid function, tanh() is the tangent function, and� refers to
element-wise multiplication between two vectors. We set the initial values of h0 and c0 to be 0. For binary classifica-
tion tasks we applied another sigmoid layer of dimension 1 on top of the last output hT , i.e., htop = σ (WhT + b) ∈
[0, 1], and trained the RNN model by optimizing the binary cross-entropy loss on the training dataset.

Implementation and Training Techniques We implemented our deep learning models with Python Theano42 and
Keras43 libraries and all the models were reproducible. For both DNN and RNN models, we set the dimension of
each hidden layer to be 256, which was chosen to have proper size and good performance. Several training techniques
were designed or used to better handle our data. First, we applied an L-1 regularizer with coefficient 1 · e−4 to
make the model robust and able to select important features. Our preliminary experiments showed that L-1 provided
more compact models with better or similar performance as L-2 or no regularizers. Second, dropout technique44

with rate pdr = 0.5 was used for all layers to reduce overfitting and avoid harmful weight co-adaptations. This
was implemented by randomly dropping out units by probability of pdr in the neural networks at training time and
re-scaling all the weights by Wtest = pdrWtrain at test time. Third, we applied novel batch normalization45 on
all non-recurrent layers. The basic idea is to normalize the activations of the previous layer such that the outputs
keep mean of 0 and standard deviation of 1 in each mini-batch during training. The running averages computed on
training dataset are used to normalize the outputs at test time. This strategy speeded up training process and improved



overall performance. Additionally in our experiments we found that applying batch normalization before the input
layer had relatively the same impact as taking z-normalization on the input directly. They both improved model
performance but the former one required less data pre-processing cost and more flexible. Fourth, we used RMSprop46

as the gradient descent optimization algorithms to train these models. RMSprop utilizes an adaptive learning rate to
normalize gradient values by their magnitudes. Finally, all our deep learning models could be efficiently trained within
several hours on a single desktop with i5-4590S CPU and 16 GB memories.

Investigating Important Features Deep learning models are often argued to be difficult to interpret and investigate,
especially because of their complex structures and thousands of or even millions of parameters. Furthermore, care-
lessly attempting to check and visualize individual units in neural networks might lead to misleading conclusions47.
However, by checking the overall model weights and structures, it is still possible to identify important features ex-
tracted from the deep learning models and obtain rough quantitative evaluations. We designed the feature importance
score I for such purpose. We first take the weight matrix in the first layer W [1] ∈ RD[2]×D of a DNN model as an
example, where each column w

[1]
d of W [1] corresponds to the dth input feature. A simple way to quantify the feature

importance is to take the summation of each column. The first importance score of dth input feature is formally de-
fined as I1(d) =

∑D[2]

i=1 W
[1][i, d], where W [i, d] is the number in ith row and dth column of W . However, we only

consider the first layer in this score, which is definitely insufficient for a deep models. To overcome this issue, we need
to take weights in higher layers into consideration. Since ReLU function was used as transformation function in all
the hidden layers, we multiplied weights in all layers and took the value at the corresponding index as the importance
score. We also need to take care of the impact of batch normalization since it introduces different scales on parame-
ters, so we apply batch normalization operation before we multiply the weight matrix for each layer. Thus, the second
importance score can be defined formally as

I2 = W [L]BN [L]
(
· · ·W [2]BN [2]

(
W [1]BN [1](1)

))
∈ R1×D

where BN [l] denotes the batch normalization operation for layer l. This process can also be viewed as a simplified
version of the original deep neural networks without non-linear transformations or bias vectors. In our experiments, I2
was used for our DNN models. In order to validate the way of investigating important features and verify the selected
features, we checked previous clinical studies and compared with features from our baseline models.

Other Machine Learning Baselines In order to evaluate the proposed deep models and validate the findings, we also
compared some commonly used machine learning baselines in clinical research, including Logistic regression (LR),
linear support vector machine with hinge loss (SVM), and random forest (RF). All the baselines are implemented
in Python Scikit-learn48 package. We kept most of the default settings and hyperparameters which are shown to be
effective in practice, but made several specific changes to better fit our tasks. In order to distinguish important features
an introduce sparsity into the model coefficients, we also used L-1 penalty in LR and SVM, tuned the regularization
strength C by searching from 1 · e−4 to 10 and finally chose C = 0.1 in our experiments since it usually provided
best prediction results. In RF, using more trees usually leads to better results, but also possibly makes the model
computationally inefficient and overfitted to training samples, and the model size also will grow linearly to the number
of trees. Since using more trees brought negligible performance improvement but drastically increased the model size
in our preliminary experiments, we took the default setting (10 trees) so that the RF model had moderate size as others.
As shown in Table 3, all the tested models had comparable sizes and thus the performance comparison was fair.

4 Results and Discussions

Classification Result Comparison As mentioned before, we conducted two classification tasks (ST-LT and LT-
OD). All 102 166 patients were included in the 5-fold cross validation for ST-LT task. Only 3.47% long-term users

Table 3: Model size comparison when saved into binary files in disk. All deep learning models are serialized and
saved in HDF5 files, and other models are saved in cPickle files.

Model DNN RNN LR SVM RF

File Size (KB) 1, 878 9, 320 21 23 2, 282



Table 4: Long-term opioid patient prediction (ST-LT) results (mean± 95% confidence interval). In Setting A, we take
all the medical records before the date when the patient is marked as long-term user or Mar, 31, 2016, whichever is
earlier; Setting B is the same as Setting A except that we exclude all the opioid and non-opioid analgesics prescriptions;
In Setting C we take records made before the patient’s first opioid prescription. Best results shown in bold.

Baseline Models Deep Models
LR SVM RF DNN-1hl‡ DNN-2hl DNN-3hl RNN

Setting A

Acc. 0.8946± 0.002 0.8938± 0.002 0.8666± 0.004 0.8960± 0.002 0.8954± 0.001 0.8975± 0.002 0.8961± 0.002

AUC 0.9074± 0.002 0.9038± 0.002 0.8747± 0.003 0.9086± 0.002 0.9082± 0.002 0.9091± 0.002 0.9094± 0.002

Prec. 0.8483± 0.007 0.8671± 0.006 0.8213± 0.009 0.8539± 0.013 0.8546± 0.009 0.8567± 0.009 0.8719± 0.008

Rec. 0.6099± 0.006 0.5868± 0.007 0.4702± 0.018 0.6122± 0.009 0.6082± 0.006 0.6178± 0.006 0.5957± 0.007

κ 0.6473± 0.007 0.6383± 0.007 0.5249± 0.018 0.6516± 0.007 0.6489± 0.004 0.6571± 0.006 0.6472± 0.006

Setting B

Acc. 0.8385± 0.002 0.8372± 0.002 0.8162± 0.002 0.8371± 0.002 0.8340± 0.002 0.8352± 0.002 0.8371± 0.002

AUC 0.8369± 0.002 0.8366± 0.002 0.8044± 0.002 0.8412± 0.002 0.8362± 0.002 0.8362± 0.003 0.8466± 0.002

Prec. 0.7161± 0.010 0.7309± 0.011 0.6590± 0.011 0.7319± 0.013 0.6999± 0.010 0.7121± 0.022 0.6889± 0.012

Rec. 0.3892± 0.005 0.3623± 0.006 0.2683± 0.005 0.3612± 0.008 0.3749± 0.016 0.3712± 0.018 0.4207± 0.020

κ 0.4177± 0.007 0.4005± 0.009 0.2952± 0.006 0.3998± 0.008 0.3996± 0.013 0.4005± 0.009 0.4297± 0.010

Setting C

Acc. 0.7917± 0.001 0.7908± 0.001 0.7890± 0.001 0.7919± 0.001 0.7920± 0.001 0.7915± 0.001 0.7989± 0.001

AUC 0.7323± 0.003 0.7327± 0.003 0.6936± 0.003 0.7220± 0.004 0.7340± 0.004 0.7218± 0.004 0.7536± 0.003

Prec. 0.5366± 0.019 0.5303± 0.021 0.5007± 0.010 0.5670± 0.031 0.5943± 0.012 0.5774± 0.027 0.5692± 0.028

Rec. 0.0996± 0.003 0.0800± 0.003 0.1279± 0.004 0.0646± 0.005 0.0672± 0.011 0.0490± 0.015 0.1991± 0.002

κ 0.1090± 0.005 0.0885± 0.005 0.1289± 0.006 0.0756± 0.004 0.0658± 0.013 0.0587± 0.016 0.2076± 0.007

Table 5: Opioid-dependent patient prediction (LT-OD) results (mean± 95% confidence interval). Settings A, B, C are
defined the same as those in Table 4. Best results shown in bold.

Baseline Models Deep Models
LR SVM RF DNN-1hl‡ DNN-2hl DNN-3hl RNN

Setting A

Acc. 0.6929± 0.010 0.6805± 0.007 0.7417± 0.007 0.7441± 0.010 0.7550± 0.008 0.7547± 0.009 0.7607± 0.009

AUC 0.7119± 0.010 0.6985± 0.010 0.7773± 0.011 0.7853± 0.012 0.7975± 0.010 0.8044± 0.011 0.8060± 0.010

Prec. 0.5385± 0.017 0.5212± 0.010 0.7049± 0.022 0.6214± 0.021 0.6323± 0.012 0.6328± 0.018 0.6896± 0.020

Rec. 0.5924± 0.022 0.5748± 0.019 0.3986± 0.016 0.6233± 0.028 0.6457± 0.031 0.6471± 0.024 0.5205± 0.021

κ 0.3262± 0.017 0.2966± 0.016 0.3555± 0.015 0.4273± 0.019 0.4520± 0.021 0.4571± 0.017 0.4505± 0.019

Setting B

Acc. 0.6763± 0.007 0.6669± 0.009 0.7331± 0.010 0.7376± 0.011 0.7406± 0.009 0.7427± 0.006 0.7417± 0.006

AUC 0.6968± 0.008 0.6898± 0.010 0.7659± 0.013 0.7720± 0.009 0.7821± 0.012 0.7829± 0.008 0.8010± 0.007

Prec. 0.5156± 0.013 0.5029± 0.012 0.6784± 0.022 0.6214± 0.023 0.6146± 0.017 0.6289± 0.017 0.7107± 0.019

Rec. 0.5743± 0.022 0.5600± 0.018 0.3867± 0.024 0.5733± 0.026 0.6162± 0.025 0.5810± 0.039 0.3976± 0.026

κ 0.2951± 0.020 0.2734± 0.020 0.3301± 0.028 0.4046± 0.020 0.4201± 0.019 0.4098± 0.018 0.3787± 0.021

Setting C

Acc. 0.6404± 0.007 0.6332± 0.012 0.6994± 0.007 0.6870± 0.009 0.6911± 0.009 0.7065± 0.008 0.6956± 0.008

AUC 0.6512± 0.009 0.6429± 0.010 0.6999± 0.011 0.7130± 0.014 0.7216± 0.014 0.7279± 0.014 0.7144± 0.011

Prec. 0.4639± 0.030 0.4554± 0.017 0.6019± 0.021 0.5491± 0.020 0.5485± 0.023 0.6193± 0.024 0.5975± 0.018

Rec. 0.4605± 0.020 0.4629± 0.017 0.3067± 0.018 0.4590± 0.075 0.5338± 0.065 0.3305± 0.030 0.2895± 0.028

κ 0.1906± 0.023 0.1821± 0.022 0.2342± 0.020 0.2702± 0.029 0.3006± 0.026 0.2542± 0.024 0.2542± 0.032

are opioid dependent and thus the labels are quite imbalanced for LT-OD task. To get robust prediction and features,
we randomly generated 14 datasets with class ratio of 1

3 by downsampling the non-opioid-dependent patients. Each
generated dataset had records from 2 237 patients. We further introduced three different settings (A, B, C) to test
model performances in different simulated situations. The definitions of the settings are described in the caption
of Table 4. Setting A was the ideal case and the best prediction results could be achieved in this setting since all
possible information was taken into consideration. After we found the analgesics usage can be good indicators for our
prediction tasks and might hide other indicators, we designed Setting B which might impair the prediction performance
but help us find some hidden but useful features. Setting C was the most practical case among the three and we took
it to demonstrate the early prediction capacity of our methods. For all the settings and tasks, classification accuracy

‡DNN-khl refers to DNN models with k hidden layers and one output layer, k ∈ {1, 2, 3}.



(Acc.), area under the receiver operating characteristic curve score (AUC), precision (Prec.), recall (Rec.), and Cohen’s
kappa coefficient (κ) are reported. Results for ST-LT and LT-OD tasks are shown in Table 4 and Table 5, respectively.
First, deep models provided the best performance in terms of most evaluation metrics. The improvements on LT-OD
were larger than ST-LT. Second, the RNN models which captured temporal information usually but not always beat
standard DNN models. It obtained the best AUC score in 5 out of 6 settings. This implies that even loosely segmented
time series contains useful temporal information. However, the superiority of RNN was shown to be less on LT-OD
than ST-LT, and one possible reason is the lack of training samples on LT-OD.

Feature Analysis It is useful to get to know which features are more related to opioid use, or played more important
roles in the prediction models. We take the DNN-3hl models in Setting A and show the top ten most important features
ordered by the absolute value of importance score I2 in Table 6. Basically, features with positive/negative score can be
interpreted as positively/negatively correlated to the prediction target (long-term use in ST-LT, and opioid dependence
in LT-OD). The score should only be compared within the same model and the same task. For both tasks, “Opioid
Analgesics” prescription is selected as the most important indicators. “Non-opioid Analgesics” is also an important
factor for long-term opioid use but not very useful to distinguish opioid-dependent user from long-term user. Several
disorders diagnoses, such as “substance-related disorders”, “anxiety disorders”, and “other mental health disorders”
(e.g., interview, evaluation, and consultation), are all highly related to opioid dependence. These findings are consistent
with previous studies and most of the top features are also selected by LR and RF baselines. In addition, the scores for
top features in LT-OD task are closer than those in ST-LT. This indicates that in Setting A identifying opioid-dependent
users is a more challenging task which requires the exploit of more different features. The fact that all models had
higher evaluation score on ST-LT than LT-OD in Setting A (Table 4 and 5) also supported the same claim. As we only
did preliminary investigations, more details and validations will be discovered in the following work.

Table 6: Most Important features for long-term opioid patient (ST-LT, left) and opioid-dependent patient (LT-OD,
right) identified from DNN-3hl model.

ST-LT Prediction LT-OD Prediction

Table Code Feature Name I Table Code Feature Name I

RX C8834 Opioid Analgesics 0.2287 RX C8834 Opioid Analgesics 0.7784

RX C8890 Amphetamine-like Stimulants −0.0843 DX CCS 661 Substance-related Disorders 0.6186

RX C8838 Non-opioid Analgesics 0.0802 PR CCS 182 Mammography −0.3481

PR CCS 227 Other Diagnostic Procedures 0.0272 DX CCS 663 Substance Abuse/Mental Health History 0.3248

DX CCS 258 Other Screening −0.0218 DX CCS 258 Other Screening −0.2948

RX C4859 Salicylates, Antirheumatic −0.0204 PR CCS 228 Prophylactic Vaccinations/Inoculations −0.2796

DX CCS 203 Osteoarthritis 0.0185 DX CCS 651 Anxiety Disorders 0.2785

DX CCS 205 Spondylosis 0.0179 RX C8864 Anticonvulsants 0.2626

DX CCS 98 Essential Hypertension 0.0126 RX C8860 Benzodiazepine Derivatives 0.2382

RX C2728 Vaccines/Toxoids, Other −0.0120 DX CCS 670 Miscellaneous Mental Health Disorders 0.2324

5 Summary

In this paper, we applied deep learning models for opioid user group predictions on a large-scale real-world EHR
dataset. The deep learning models were able to achieve superior classification performance and identify useful feature
indicators for opioid-dependent and long-term users. Our work demonstrated how novel deep learning models can
be utilized to obtain state-of-the-art performance in practical clinical studies. In our future work, we plan to further
investigate important features extracted from deep models, and incorporate numerical and unstructured EHR data
along with code records into deep learning prediction models. We also plan to explore more fancy deep learning
models to capture the temporal dependencies and evolutions for medical records of opioid users.
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