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Abstract

Understanding and modeling behavior of multi-agent systems
is a central step for artificial intelligence. Here we present a
deep generative model which captures behavior generating
process of multi-agent systems, supports accurate predictions
and inference, infers how agents interact in a complex system,
as well as identifies agent groups and interaction types. Built
upon advances in deep generative models and a novel atten-
tion mechanism, our model can learn interactions in highly
heterogeneous systems with linear complexity in the number
of agents. We apply this model to three multi-agent systems
in different domains and evaluate performance on a diverse
set of tasks including behavior prediction, interaction analysis
and system identification. Experimental results demonstrate
its ability to model multi-agent systems, yielding improved
performance over competitive baselines. We also show the
model can successfully identify agent groups and interaction
types in these systems. Our model offers new opportunities to
predict complex multi-agent behaviors and takes a step for-
ward in understanding interactions in multi-agent systems.

Introduction

Multi-agent systems are widespread in many real-world
applications, including autonomous vehicles, multi-player
games, etc. Approximating the behavior generating process
of multi-agent systems from observations is essential for be-
havior prediction, system identification, simulation and gen-
eral machine intelligence.

Unlike other machine learning domains such as computer
vision and natural language processing, multi-agent systems
are usually modeled in terms of agents and their interactions,
given the explicit factorization within these systems. In some
cases, interactions themselves play a key role in understand-
ing multi-agent behavior. No matter playing football, or co-
ordinating to take turns with other traffic participants at busy
intersections, the behavior of each agent is heavily affected
by other participants’ behaviors. However, modeling behav-
ior generating process and inferring interactions in multi-
agent systems is challenging due to inherent properties in
the following aspects.
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Figure 1: Illustration of three multi-agent systems, including
agent groups and interaction types.

Interaction Complexity = To model interactions explic-
itly, one suffers the complexity of O(N?) where N is the
number of agents and d is the typical interaction clique size,
which makes it computationally unmanageable to model a
large amount of agents or high order interactions.
Interaction Structure Although the interaction structure
can be pre-defined in some simple systems, e.g., spring-
systems in physics, most real-world multi-agent systems
come with unknown and evolving interaction structure.
Imagining in an open area in the university campus, the
number of agents changes frequently, and the interaction
between two pedestrians may disappear quickly after they
passed by each other. Such unknown and evolving proper-
ties require a model to handle interaction adaptively.
Heterogeneity In a multi-agent system, agents usually
come from groups with different behavior styles, and in-
teractions among them may also have inherently different
types. Considering in a basketball game, players are switch-
ing between offense and defense frequently. Interactions be-
tween players also come with two types, namely collabora-
tion and hostility. To truly approximate behavior generating
process, one should be able to identify such agent groups
and interaction types from system observations.

Pioneering work in multi-agent behavior modeling has
tackled some of the above challenges. Interactions within
the crowd of pedestrians have been modeled implicitly with
pooling mechanisms in (Alahi et al. 2016; Gupta et al. 2018;
Lee et al. 2017). However, local pooling mechanisms de-



signed for pedestrian modeling in (Alahi et al. 2016) only
deal with short-range interactions and provide limited in-
terpretations. On the other hand, pairwise interactions are
modeled explicitly with Interaction Networks (Battaglia et
al. 2016), showing accurate results for physical systems of a
small number of agents in which the interaction is pairwise
in nature. Despite the tremendous progress in existing work,
we are still in lack of a mechanism which can approximate
underlying behavior generating process, capture interactions
in a computationally efficient and interpretable fashion, as
well as identify heterogeneity in multi-agent systems.

Here we present Generative Attentional Multi-Agent Net-
work (GAMAN), a deep generative model with an attention
mechanism for multi-agent behavior modeling which han-
dles all challenges mentioned above. Build upon advances
in deep generative model (Chung et al. 2015) (Krishnan,
Shalit, and Sontag 2016), GAMAN targets on approximat-
ing the underlying generating distribution from which the
multi-agent behavior was sampled, instead of cloning the
behavior deterministically. In this way, GAMAN captures
stochasticity in the latent dynamics that beyond short-term
variation one can capture with observation-level noise. As
a generative model, GAMAN also supports multi-agent be-
havior with multi-modal distributions by adopting mixture
density in the generation process, as well as infer missing
behavior when the system is only partially observable.

With the design of an attention mechanism and a graph
representation, GAMAN captures agents’ interactions with
linear complexity in the number of agents, and handle the
evolving interaction structure. Inspired by (Hoshen 2017),
the interaction structure among agents is learned directly
from observations rather than being pre-specified. There-
fore GAMAN maintains a degree of interpretability as one
can visualize the interaction structure from learned attention.
With learned graph representation, GAMAN also supports
system heterogeneity identification, by clustering agents and
interactions embeddings. Moreover, GAMAN is amenable
to dynamic variation in number of agents.

We conduct extensive quantitative and qualitative anal-
ysis of GAMAN on three inherently different multi-agent
systems, namely: spring-ball system, basketball games and
traffics in a university campus, illustrated in Figure 1. Ex-
periments show that GAMAN supports accurate predictions
as well as system identification in which hidden properties
are abducted from observations, in all three domains.

In summary, our work makes following contributions:

e We introduce a deep generative model into multi-agent
behavior modeling, which approximates underlying be-
havior generating distribution, supports heterogeneous
systems, provides accurate predictions.

e We propose an attention mechanism working with deep
generative model, which models interactions within
multi-agent systems in a parsimonious way and provides
interpretable interaction structure.

o We demonstrate the proposed model provides more accu-
rate prediction and inference as well as more interpretabil-
ity compared with competitive baselines in three different
applications.

Related Work

Multi-agent behaviors have drawn significant research inter-
ests over the past decades. Pioneer work from Helbing and
Molnar (Helbing and Molnar 1995) introduces social force
model to capture pedestrian motion pattern. This work was
later extended in (Mehran, Oyama, and Shah 2009) to learn
the interaction forces in the human crowd, which relies on
hand-crafted features and relative distances. With the emerge
of neural networks, Recurrent Neural Networks (RNNs) or
Long Short-Term Memory networks (LSTM) based models
have been introduced to model multi-agent behavior, (Vem-
ula, Muelling, and Oh 2018; Manh and Alaghband 2018;
Alahi et al. 2016; Gupta et al. 2018; Lee et al. 2017;
Xu, Piao, and Gao 2018). In this line of research, specially
designed pooling mechanism is the key to capture interac-
tions. Alahi et al. propose Social LSTM (Alahi et al. 2016)
that predicts pedestrians trajectory using RNNs with a novel
social pooling layer in the hidden state of nearby pedestri-
ans. Later, Gupta et al. propose Social GAN (Gupta et al.
2018) showing a Multi-Layer Perceptron (MLP) followed
by max pooling works better than social pooling method in
a similar task and enjoys better computationally efficiency.
Lee et al. (Lee et al. 2017) target on traffic behavior predic-
tion at intersections and design DESIRE, an RNN Encoder-
Decoder framework together with feature pooling layer. Al-
though pooling layers methods show competitive perfor-
mance in multi-agent behavior predictions, the lack of in-
teroperability limits our understanding towards how multi-
agents interact with each other.

Besides the pooling mechanism, Graph Neural Network
(GNN) has also been introduced to handle the multi-agent
system. For example, Battaglia et al. propose Interaction
Networks (IN) to learn a physical simulation of objects with
binary relations (Battaglia et al. 2016), Sukhbaatar et al. pro-
pose Communication Networks (CommNets) (Sukhbaatar,
Fergus, and others 2016) for learning optimal communi-
cations between agents. Later, Hoshen introduces attention
mechanism into GNN and develop VAIN (Hoshen 2017) and
apply it to soccer data. Although VAIN scales efficiently
with number of agents, it only predicts from a single frame
and does not model past trajectories.

Another line of research models multi-agent systems in
the imitation learning framework. The key idea is to learn
policy representations from agent actions and system obser-
vations (Grover et al. 2018; Le et al. 2017; Liu et al. 2018).
With the imitation learning framework, these models require
explicitly defined action set, which targets more on continu-
ous control and robotic applications.

Deep Generative Model Deep generative models have
been proposed to reveal the underlying data generating pro-
cess for sequential data (Rezende, Mohamed, and Wierstra
2014; Krishnan, Shalit, and Sontag 2016; Chung et al. 2015;
Che et al. 2018), to name a few. Deep Markov Model
(DMM), a nonlinear state-space model, is proposed in (Kr-
ishnan, Shalit, and Sontag 2016) by marrying the ideas of
deep neural networks with Kalman filters. In (Chung et al.
2015), the authors introduced the variational recurrent neural
network (VRNN) which glued an RNN with a VAE together
to form a stochastic and sequential neural generative model.



Recently, there are several explorations of the deep gener-
ative model in multi-agent systems. Ivanovia et al. (Ivanovic
et al. 2018) combine Conditional Variational Autoencoder
(CVAE) (Kingma and Welling 2013; Rezende, Mohamed,
and Wierstra 2014) and LSTM to generate behavior of bas-
ketball players. In another relevant work (Zhan et al. 2018),
Zhan et al. also use VRNN-based generative models (Chung
et al. 2015) and introduce a macro-goals mechanism (i.e.,
basketball players’ intentions) and break down the multi-
agent behavior generation to an evolving process with multi-
ple pre-defined consequences. More recently, Yeh et al. inte-
grate VRNN and GNN into GraphVRNN (Yeh et al. 2019),
to model trajectory in sports. Most of the existing works fo-
cus on agent behavior forecasting and provide limited infor-
mation regarding interactions types or agent groups.

Generative Attentional Multi-Agent Network

We consider a multi-agent system of K agents over time
horizon T', which consists of behavior of every agent over T’
time steps. We establish notations as follow:

e Let D denote all behavior for a multi-agent system.

o Let x<7 = {X;}1<i<7 denote a system’s behaviors over

time horizon T', where x; = {x/'} and x¥ is the behavior
of agent k at time step t.

o Let z<r = {z;}1<i<7 denote a system’s latent states
over time horizon T, where z; = (e st,a;) =
({ef}agent k> {Sf}agem k> {af}agent k) and efv S?» af corre-
sponds to the agent vector, interaction vector, attention
vector of agent k at time step t respectively.

o Let {6y, 0,,0s,0,} denote the parameter set for genera-
tion network 7y and {¢x, Pz, Ps, do } denote the parame-
ter set for inference network 7.

The goal of GAMAN is to approximate the underlying be-
havior generating process and recover agents’ interactions in
a multi-agent system. To achieve this goal, GAMAN adopts
latent state assumption for the system: at every time step t,
there is a latent state z; representing full information of the
system, including each agent’s state and their interactions.
As the system evolving, new latent state z,; is generated
from current latent state z; and the behavior observation
X¢+1 1s generated from new latent state z; 1. GAMAN rep-
resents this process by a generation network with attention
mechanism parametrized by 6, from which we can sample
the system’s behavior observations x<p conditioned on its
latent states z<7.

X< ~ po(X<7|2<7T) (D

In order to learn the network, we maximize the marginal log
likelihood of all behavior observations which is the summa-
tion of marginal log likelihood of every observation x 7.

T
0" = argmax, Z L(0) = argmax, Z Z logpe(x) (2)
D

D t=1

Given the generation network, the marginal log-likelihood
of one behavior observation py(x) could be calculated by

integrating out all possible latent states z. However, stochas-
tic latent states z cannot be analytically integrated out. Fol-
lowing the same trick used in VAE (Kingma and Welling
2013), VRNN (Chung et al. 2015) and DMM (Krishnan,
Shalit, and Sontag 2016), we resort to the well-known varia-
tional principle and design a inference network parameter-
ized by ¢ , and maximize the variational evidence lower
bound (ELBO) F(0,¢) < L£(0) with respect to both 6 and
¢. The generation network and inference network are illus-
trated in Figure 2. In this section, we present the design
of generation and inference network in details. Note that
though GAMAN supports heterogeneous systems with mul-
tiple agent types, we only consider a single agent type in this
section for the sake of clarity.

Generation Network

The generation network of GAMAN follows the emission
and transition framework, which is designed by applying
deep neural networks to continuous state space models.
Transition We design transition network from latent state
Zi 1 = {et_l, S¢—1, at_l} toz; = {et, S¢, at} in GAMAN
to learn the temporal dependencies in multi-agent systems.
We also introduce attention mechanism into the transition
network to capture and reveal agents’ interactions. The tran-
sition network contains three sub-functions: agent function
fo., interaction function fy_ and attention function fp, . In
GAMAN, we use gated recurrent units (GRU) (Chung et al.
2014) for agent function fy_, multilayer perceptron (MLP)
for interaction function fy_ and attention function fy, .

At time step ¢, the agent vector of k-th agent e is first
sampled from transition distribution 7y,

ef ~ m, (ef‘e’it, {5{71}#% {agfl}j?ék; 9.3) )
In GAMAN, we model the transition distribution as a mul-
tivariate Gaussian distribution mg, = N(u(‘))f, E(G)f; 0.).
We parametrize mp, with the agent function fy, , which takes
previous agent vectors of the k-th agent e’zt and all other
agents’ interaction vectors {sg i1 weighted by the weight

wy,; = Softmazy(—||al, — a§||2).

k k ;
(N(e)t ) z(e)t) = Jo. <eZt? Zwk-jsg1>
J#k
—lla* ,—al 2 g
:fo ( . Ej;éke llag_i—a3_, || Si—l)

€t k
t—1

—llaf_;—aj_;|I?

i#k ©

4)

Then the interaction vector s¥ and attention vector af of the

k-th agent are updated through interaction function fy, and
attention function fy, respectively.

st = fo.(ef) ai = fo.(ef) 5)
Combining equations 3, 4 and 5, GAMAN generates the
latent state z; = {eq, s a;} from previous one z;_; =

{er—1,8¢-1,ai 1}

The motivation behind such attention mechanism comes
as follows. In a multi-agent system, an agent’s temporal dy-
namic is affected by itself and other agents’ interactions.
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Figure 2: Generation and inference network of GAMAN for the k-th agent in a K-agent system. Note that we only consider

forward setting for the sake of clarity.

Ideally, the transition distribution should be parametrized
by the combination of the agent encoding vector e}, and all
cliques of interaction (could be 2nd or higher-order). How-
ever, these interaction cliques are not known a-priori in most
scenarios and usually require O(N?) encoding evaluations
where N is the number of agents and d is the typical inter-
action clique size. To address these limitations, we design
the attention mechanism to approximate other agents’ inter-
actions by a weighted average of each agent’s interaction

encoding vector {s] } ;. as in Equation 4. With such linear
approximation, GAMAN could incorporate interactions in a
multi-agent system efficiently as well as provide a measure
of the interaction between agents through the weight wy, ;.
Although the Softmax weight operation scales quadrati-
cally with the number of agents, it cost significantly less
computation than evaluating interaction encoding s which
scales linearly in a number of agents. Therefore the over-
all computation still scales linearly in the number of agents.
Furthermore, Softmaxz operation usually yields sparse re-
sults, in which the interaction can be further approximated
by K-nearest neighbor measured in attention, boosting the
computational efficiency. Beyond efficiency advantage, the
proposed attention mechanism is also robust to variation in
the number of agents. Because no matter how the amount
of agents varies, the Softmax weighted average will adap-
tively distribute the interaction within the system.
Emission  Multi-agent system’s behavior x is generated
from latent states z in the emission process.

At time step ¢, behavior of the k-th agent x¥ is sampled
from emission distribution g

(6)

The choice of emission distribution g is flexible and de-
pends on applications. Multinomial distribution is used for
categorical data while Gaussian distribution is used for con-
tinuous data. For multi-agent systems, mixture distribution
is adopted given the multi-modal nature of agent’s behavior.

The emission distribution 7, is parametrized by a multi-
layer perception (MLP) mapping fy, , which takes the agent

xt ~ 7o, (%t le; 0z)

vector of the k-th agent e/ as input. For example, consider
. . . k .
a Gaussian distribution (each with mean ,u(x)t, covariance

E(x)t and weight wF) as the emission distribution 7_,

(07, 2007wk} = f, (ef) ©)

To summarize, the overall generation process is described
in Algorithm 1. The parameter set of generation network is
0 = {0.,0.,05,0,}. The joint probability of behavior and
latent states can be factorized as following Equation 8.

pe(X<T7Z<T|Zo) = po, (x<rle<r) - po. (e<r|20; 0, 6.)

I

{pe (x¢ler) - po, (erlet—1,8t—1,a:—1; 05, 0q)

t=1
T K )
=1111 [pe tlet) - o, (eﬂef—l){sg—l}j?ﬁk?
t=1k=1
{a{_l}#k;as,ea)] ®)

Inference Network

The goal of the inference network is to obtain an objective
which can be optimized easily, making the model parameter
learning amenable. Instead of directly maximizing marginal
log-likelihood £(#) w.r.t. 6, we build an inference network
with a tractable distribution 7, and maximize the variational
evidence lower bound (ELBO) F (0, ¢) < L(6) w.r.t both §
and ¢. Here ¢ is the parameter set of the inference network
which will be formally defined at the end of this section. The
overall ELBO is summed over each time step of the behavior
demonstration.

T
‘F(07 ¢) :qub(ng‘ng) |:Z Inge(Xt‘ZgT)
t=1

9

— Dk r(qs(z<r[x<7, 20)|IP0 (Z<7 |20))



Algorithm 1 Generation Network of GAMAN in a K-agent
system with mixture of Gaussian emission distribution.

Algorithm 2 Learning GAMAN with stochastic backpropa-
gation and Adam optimizer (Kingma and Ba 2014).

1: fork=1,...,Kdo
2:  Initialize ef ~ N(0,1)
3:  Initialize sf = fo,(ef) af = fo, (ek)
4: end for
5: fort=1,...,Tdo
6: fork=1,...,Kdo

k k X ;
E (Mw)t ) Ew)t) = fo. (eit» Zj;ék wk,jsg&)
8: Sample ef ~ N(u(e)f, E(g)f; 6e)
o: Compute sf = fo.(ef) af = fo, (e)
10: end for
11: fork=1,...,Kdo

k k

12: Compute {M(x)t , BT Wk Y = fo, (€F)
13: Sample xf ~ Zi:i{wf}i/\/’({u( )0, B)
14: end for
15: end for

where the expectation is taken w.r.t g4(z<7|x<7), the ap-
proximated posterior of latent states z provided by the infer-
ence network. To get a tight bound and an accurate estimate
from GAMAN, we design the inference network as follows.
First, we keep the same temporal dependency of latent states
z in the inference network, leading to the factorization:

T
qs(z<r|x<r) = [ [ 96(2t|20, X<7) (10)
t=1

Further, the inference network inherits both attention
mechanism and corresponding conditional independence
from the generation network. Thus the right-hand side of
Equation 10 can be further factorized as:

Q¢>(Zt|z<taX§T) = Q¢>(et,sta at|e<tvst—1aat—17X§T)
= qo(etle<s,si—1,a,-1,%<7)
K

= H %(eﬂeit? {Siq}#k» {3171}#16’X§T) (11)
k=1

while non-stochastic interaction vector s¥ and attention vec-
tor a¥ are mapped directly from agent vector e

s; = fo,(ef) al = fo, (ef) (12)

where function fp, and fy, are inherited from generation
network. Further, we model the right hand side of Equa-

tion 11 %(eﬂezt’{Sg—1}j¢kv{a{—1}j¢kvX§T) as Gaus-
o k K .
sian distribution % = N(u(?);, ul?);; ¢.) parametrized

by gated recurrent units (GRU) gg4,

llak | —al | ||?.J
Zj;éke t—1 &1 Stl)

llaf_y—a 42

k k
(u?), 29) = 9pe (hf, ey,
ik ©
(13)
where h¥ is the encoding of the k-th agent’s behavior

x*. Inspired by (Krishnan, Shalit, and Sontag 2016) , we
construct this behavior encoding with forward. In forward

Require: A set of behavior demonstrations D; Initial (6, ¢)
1: while not converged do
2: Choose a random minibatch of behaviors X C D

3 for each sample x;.7 € X do

4 fork=1,...,K do

5: Compute h¥ ;. by function ¢, on input x¥.,-

6: Sample e} ~ N(0,1)

7: Sample s§ = fo_(ef) ak = fo,(ef)

8: end for

9: fort=1,---,7Tdo
10: fork=1,...,Kdo
11: Estimate parameters (/Lw)f, ZJ_(Q)f) by fo, 4
12: given ey, {s]_ }i2k, {a]_1 }jz
13: Estimate parameters (u(¢)f, E@)f) by ge. 13
14: given e’éu {si_1 iz {at_1 Fizn, hy
15: Compute the gradient of
16: Dxr, (Q¢ (zf|) Hpe (zf|)) w.r.t (6, ¢)
17: given u(e)f, 2(9)5 and u(d’)f, Z(¢)f
18: Sample ef ~ N(u(¢)f, E(@f; oe)
19: Compute the gradient of log py, (x/']e®,)
20: end for -
21: end for
22: end for

23: Update (0, ¢) using all gradients with Adam
24: end while

setting, we only use a forward RNN gforwerd o pass
the information up to time step ¢ into behavior encoding
h¥ ie. hF = gfo”"”d(x%t). The forward setting only
use the information in the past, so it is suitable for pre-
diction task at future time step ¢’ > 7. On the other
hand, bi-direction setting uses a bi-directional RNN to cap-
ture information from both history and future, i.e. h¥ =
[gf"”””d(x’%t),gb“Ckw”d(fo:T)], which supports sys-
tem identification and inferring unobserved part from par-
tially observed behaviors. To summarize, we use ¢, and ¢,
to denote parameters related to behavior encoding h and
agent vector e respectively and use ¢ = {¢p, .} to rep-
resent the parameter set of the inference network.

Parameter Learning

We learn the parameters (6, ¢) of GAMAN by maximizing
the ELBO F (6, ¢) in Equation 9 over the set of all behavior
demonstrations D.

07,¢%) = argmaxg’qSZ.F(H,gﬁ) (14)
D

We use stochastic backpropagation (Kingma and Welling
2013) and ancestral sampling for estimating all gradients
w.rt (0,¢) and train the networks with Adam optimizer
(Kingma and Ba 2014). Algorithm 2 shows the overall learn-
ing procedure of GAMAN.

Note that here we assume all agents share the same behav-
ior generating distribution, i.e., the same set of parameters
(6, ¢). No agent role or any agent-specific information was



used during training, and the proposed model is trained with
randomly shuffled trajectories. However, GAMAN can be
easily adapted to a system with known agent types, by sim-
ply assigning different behavior generating distribution - dif-
ferent sets of parameters (6, ¢) - for each agent type. Agents
could still interact within and across agent types through the
attention mechanism introduced above. We will explore the
performance of GAMAN on the heterogeneous multi-agent
system later in the experiment section.

Experiments

We conduct experiments on one simulated physical dataset,
Spring-Ball, and two real-world large scale multi-agent
datasets, Stanford Drone (Robicquet et al. 2016) and
NBA (Linou 2016). Through experiments, we answer the
following questions: (1) How good are the behavioral pre-
dictions of our proposed model for multi-agent systems
compared to the existing state-of-the-art methods? (2) Are
the interactions learned by the proposed attention mecha-
nism helpful for multi-agent behavioral modeling? (3) Is the
proposed model able to identify different agent groups and
interaction types? In the remainder of this section, we illus-
trate the datasets, tasks, quantitative results, and interpreta-
tions to answer the questions above.

Datasets

Spring-Ball  We design a spring-ball system following
(Kipf et al. 2018). In this scenario, balls are bouncing inside
a 2D square container of size L(= 10) governed by Hooke’s
law. N (= 100) balls with mass ratio of 0.2:1:5 generated
at the probability of 0.3:0.4:0.3 are randomly connected by
{no, soft, hard} springs at the probability of 0.8:0.1:0.1,
where the elastic coefficient of soft and hard springs is 0.5:2.
The static lengths of all springs are arbitrarily set to 1. The
balls are initialized with random positions and velocities.
Balls collide with the walls governed by the laws of elastic
collisions as balls are viewed as mass points. The trajecto-
ries are simulated at 1000 FPS, and we sample the data every
100 frames. We generated 1000 cases, each has 49 frames.
Stanford Drone This dataset consists of multiple aerial
videos of 8 unique scenes captured around the Stanford cam-
pus, and there are six types of agents (e.g., biker, car) nav-
igating the crowded spaces with dynamic interactions. For
experiments, we choose the top 3 types of agents, Biker,
Pedestrian, and Car from the dataset, and we use all the
videos except the ones in scene little, coupa, and quad, since
the selected types of agents are much more sparse in these
3 scenes. The original frame rate of these videos is around
29.97 FPS, and we down-sampled all the videos to 5 FPS.
Besides, we divide each video into 12-second long (i.e., 60
frames) distinct sub-videos along the timeline, and we treat
each sub-video as one multi-agent case. We only keep the
cases with the number of agents between 10 and 90. Table 1
shows the statistics of the processed dataset.

NBA  This dataset is composed of 49,628 12-second se-
quences of the 2D basketball players and ball overhead-view
point trajectories from 200 games in the 15/16 NBA season
captured by SportVU Player Tracking technology. It tracks

Table 1: Statistics of the processed Stanford Drone dataset.

Scenes \ # of Cases # of Bikers # of Pedestrians # of Cars

gates 93 716 652 19
nexus 240 108 2182 1316

bookstore 191 733 1784 15
deathCircle 110 1517 1174 189

hyang 234 1004 2649 15
Total | 868 4078 8441 1554

positions of each player and collects data every 40ms. We
down-sampled all the data to 5 FPS. To reduce the uncer-
tainty of the trajectories, we align the sequences and ensure
the offense always shoots toward the same side.

Experimental Design

Prediction Task  For a multi-agent case with T' frames,
given its first L frames (of all agents), one needs to pre-
dict each agent’s future behaviour in the last 7" — L frames.
For our datasets, the (7', L) pairs are: Spring-ball, (49, 35);
NBA, (60, 50); Stanford Drone, (60, 50).

Evaluation Metrics  Given we consider the agent’s tra-
jectory as its behavior, we evaluate the behavior forecasting
with four different metrics:

e [ distance (L2): The L distance between predicted tra-
jectories and the ground truth, averaged over each pre-
dicted frame for each agent.

e Maximum Lo distance (maxL2): The maximum Lo dis-
tance between the prediction and ground truth throughout
a predicted trajectory, averaged over each agent.

e Miss rate: The fraction of trajectories whose distance be-
tween the final predicted and ground-truth point pairs ex-
ceeds a constant number . We choose x as 0.2 and 0.5,
noted by MRO0.2 and MRO.5 respectively.

Baselines We compare our GAMAN with multiple base-
line models in the trajectory forecasting task. To demon-
strate the advantage of attention mechanism and learned
interactions in GAMAN, we remove all interactions from
GAMAN for ablation comparisons.

o Extrapolation and linear method:

— Velocity: a velocity-based extrapolation.
— KF: Kalman Filter.
e Deep neural networks based models:
— LSTM: Long Short Term Memory Network (Hochre-
iter and Schmidhuber 1997)

— Social GAN: Socially Acceptable Trajectories with
Generative Adversarial Networks (Gupta et al. 2018)

— SocialLSTM: Social Pooling with LSTMs (Alahi et al.
2016)

— NRI: Neural Relational Inference Model (Kipf et al.
2018)

— IN: Interaction Networks (Battaglia et al. 2016)

— GAMAN-NI: GAMAN with No Interaction.



Table 2: Behavior prediction results on 3 datasets.

| Spring-Ball | Stanford Drone | NBA

| L2 maxL2 MR0.2 MRO.5 | L2 maxL2 MR0.2 MRO.5 | L2 maxL2 MR0.2 MRO.5
Velocity 0.3786 0.9338 0.6778 0.4126 | 0.0214 0.0436  0.0380 0.0049 | 0.2470 0.5337 0.7745 0.3885
KF 1.0616 1.8522 0.9500 0.7938 | 0.2482 0.4790 0.5900 0.1835 | 0.6566 1.1420 0.9385 0.7303
LSTM 0.1839 0.4108 0.5440 0.2662 | 0.0249 0.0478 0.0323 0.0041 | 0.1823 0.3636 0.6439 0.2107
Social GAN 0.1952 04549 0.6706 0.2989 | 0.0231 0.0453 0.0384 0.0038 | 0.2495 0.5031 0.7954 0.3873
SocialLSTM | 0.6763 1.2372 0.9628 0.8129 | 0.0702 0.1239 0.0813 0.0062 | 0.4995 0.8994 0.9460 0.6998
NRI 0.2311  0.5351 0.6541 0.3529 | 0.0291 0.0596 0.0382 0.0033 | 0.1725 0.3647 0.6415 0.2222
IN 0.2657 0.6323 0.7324  0.4212 | 0.0257 0.0606  0.0285 0.0031 | 0.1855 0.4114 0.7444 0.2639
GAMAN-NI | 0.2624 0.5968 0.5371 0.4603 | 0.0264 0.0572 0.0349 0.0052 | 0.2465 0.5983 0.6428 0.4371
GAMAN 0.1728 0.4049 0.4431 0.2885 | 0.0203 0.0416 0.0335 0.0047 | 0.1720 0.3794  0.6089  0.2023

Table 3: Log-likelihood of generative models on 3 datasets.

\ SociaLSTM NRI GAMAN-NI GAMAN
Spring-Ball -6.25 -6.40 -0.75 1.21
Stanford Drone 1.34 451 4.04 6.12
NBA -9.54 0.51 -1.1 0.80

Implementation details For the generation network in
GAMAN, we use multivariate Gaussian with diagonal co-
variance for both transition distribution 7y, and emission
distribution 7y, . fp, is parameterized by GRU. fp_ is pa-
rameterized by a 3-layer MLP with ReLU (Nair and Hinton
2010) activations followed by a linear output layer. Both fj,
and fy, are parameterized by 3-layer MLPs with ReLU ac-
tivations. For the inference network, we also use multivari-
ate Gaussian distribution with diagonal covariance for 7y,
which is parameterized by GRU, and fy_ and fp, are inher-
ited from the generation network. All sizes of hidden layers
are 32 and model is optimized with Adam (Kingma and Ba
2014). We implement KF model using the pykalman (Duck-
worth 2013). For other models compared in experiments, we
keep the original network structure and use a similar amount
of parameters for fair comparison. We randomly split each
dataset into the training/validation/test set with the ratio of
7:1:2, choose the best model weights on the validation set,
and report the performance on the test set.

Quantitative Results

Prediction Table 2 shows the behavior forecasting results
on these 3 datasets. We observe that, in most cases, our pro-
posed GAMAN outperforms all the competitive baselines in
terms of 4 metrics and achieves the best performance. Fur-
ther, there is significant improvement from GAMAN-NI to
GAMAN, which demonstrates that the proposed attention
mechanism can efficiently capture the interactions in multi-
agent system and provide better behavior forecasting results.
Inference = Meanwhile, we compare the log-likelihood
of generative models in Table 3. Models with higher log-
likelihood value indicate they are fitted tighter on datasets.
Our proposed GAMAN excels all generative models with
the highest log-likelihood values on all 3 datasets.
Combined with the performance of prediction and infer-
ence, it is certain that GAMAN not only provides more ac-
curate predictions but also offers preferable inference.

Interaction Analysis

To further understand the interpretability of GAMAN, espe-
cially agent vectors e; and interactions s;, we conduct case
study on 3 datasets. We use weighted interaction vectors s
to get the pairwise relational interaction vectors (e.g. pair-
wise distance or other metrics) and visualize the relational
interaction vectors. To acquire a reasonable visualization of
the learned vectors, we projected vectors on the 2D plane us-
ing T-SNE (Maaten 2008). Figure 3 shows several concrete
examples of learned vectors. The same group of agents and
the same type of interactions share the same colors.

For Spring-Ball, we randomly choose 1000 frames from
test set and get the corresponding vectors. Figure 3(a) and
Figure 3(b) show the clusters of 3 groups of agents (balls)
and 3 types of interactions (springs) among balls. More-
over, in Stanford Drone, we randomly select 500 frames
from test set. Figure 3(c) and Figure 3(d) show the clusters
of 3 groups of agents (e.g., bikers) and 3 types of interac-
tions respectively. Finally, we randomly choose 500 frames
from test set on NBA, Figure 3(e) and Figure 3(f) indicate
3 groups of agents (balls, offense and defense) and 3 types
of interactions (ball-players, collaborations and hostilities).
Conceivably, agent groups and interaction types identified
by GAMAN are reasonable and convictive, which demon-
strates its capability to handle heterogeneous systems and
provide interpretable representations.

Summary

We proposed the Generative Attentional Multi-Agent Net-
work (GAMAN) — a novel deep generative model designed
for multi-agent systems, which approximates the underlying
behavior generating process with a latent state space model
and integrated with attention mechanism to capture agent
interactions in a computationally efficient and interpretable
fashion. Empirically we showed that GAMAN outperforms
existing models on prediction accuracy and correctly identi-
fies agent groups and interaction types in different systems.
Given the increasing amount of data we collected everyday,
GAMAN would empower us to discover new knowledge of
real-world complicated multi-agent systems.
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